机器学习(5) 推荐 矩阵分解(Matrix Factorization)

本文简要介绍了推荐系统的矩阵分解方法,重点讨论了推荐任务的定义,其中评分矩阵R由用户隐因子向量U和物品隐因子向量V的乘积表示。通过分解稀疏的评分矩阵,可以学习到用户偏好和物品特性,并降低数据维度。F-范数在优化过程中作为损失函数,用于最小化重构矩阵与原始评分矩阵的差距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稍微看了一些关于推荐方面的资料,做一下简单的总结。


推荐任务定义:

在一个标准推荐任务中,我们有 m 个用户(user), n 个物品(item),以及一个稀疏评分矩阵 R(RRmn) R 中每个 Rij 表示用户 i 对于物品 j 的评分。如果 Rij0 ,那么说明用户 i 有对物品 j 的评分,反之则没有。每一个用户 i 可以用向量 sui=(Ri1,Ri2,...,Rin) 表示,同样地,每一个物品 j 可以用向量 sij=R1j,...,Rmj 表示。对于用户和物品各自的边信息(side information)矩阵,则分别用 XRmp YRnq 表示。

ui,vjRk ,其中 ui 为用户 i 的隐因子向量(latent factor vector), vj 则是物品 j 的隐因子向量(latent factor vector), k 是隐空间的维度。因而,对于用户和物品来说,对应的隐因子向量形式分别是 U=u1:m V=v1:n 。由于 R=UV ,所以如果能够求出 U

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值