在Idea中编写Spark程序并运行

一:基本思路

  1. 在Idea中安装插件,使得Idea中可以编写scala代码。
  2. 使用Maven创建项目,并在pom.xml文件中配置相关的依赖。
  3. 下载安装Scala

    (1)访问Scala官方网站(https://www.scala-lang.org/download/)下载适合操 作系统的Scala安装包

    (2) 打开命令提示符(CMD),输入以下命令:scala -version 如果显示Scala 的版本信息,说明安装成功。

    (三)在IDEA中添加Scala插件

    IDEA中,默认是不支持编写Scala的,需要额外配置一个插件。如下图示。

    (四)使用Maven创建新项目

    核心的操作步骤如下:

    1. 启动idea,选择新建项目。之后的设置如下:

    2.将Scala添加到全局库中

    3.设置maven依赖项。修改pom.xml文件,添加如下:

      <properties>
            <maven.compiler.source>8</maven.compiler.source>
            <maven.compiler.target>8</maven.compiler.target>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        </properties>
    
    
        <!--    声明并引入共有的依赖-->
        <dependencies>
            <!--   scala-library-->
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>2.12.15</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.12</artifactId>
                <version>3.2.2</version>
            </dependency>
        </dependencies>
    
    </project>

    4.下载依赖。添加完成之后,刷新Maven,它会帮助我们去下载依赖。

    5.编写代码。修改文件夹的名字。

    6.新建Scala类。如果这里没有看到Scala类的选项,就去检查第2步。

    选择Object,输入WordCount

    7.编写代码如下
    它的功能是wordcount的功能:从指定的文件夹中去读取文件,并做词频统计。
    import org.apache.spark.{SparkConf, SparkContext}
    object WordCount{
      def main(args: Array[String]): Unit = {
        // 配置 Spark 应用程序
        val conf = new SparkConf().setAppName("WordCount").setMaster("local[*]")
        // 创建 SparkContext 对象
        val sc = new SparkContext(conf)
    
        // 读取目录下的所有文本文件
        val textFiles = sc.wholeTextFiles("input")
    
        // 提取文本内容并执行 WordCount 操作
        val counts = textFiles.flatMap { case (_, content) => content.split("\\s+") }.map(word => (word, 1)).reduceByKey(_ + _)
    
        // 将所有分区的数据合并成一个分区
        val singlePartitionCounts = counts.coalesce(1)
        // 保存结果到文件
        singlePartitionCounts.saveAsTextFile("output")
        // 停止 SparkContext
        sc.stop()
      }
    }

    8.准备待统计的词频文件。在项目根目录下建立文件夹input,并穿件两个文本文件:word1.txt, word2.txt。如下图。

    9.运行代码。点击运行代码。

    10生成结果如上右图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值