【目标检测】根据目标边缘检测结果,生成完整轮廓-轮廓生长算法

在MATLAB中,可以使用bwlabel函数来标记连通域,并使用regionprops函数来获取目标的轮廓信息。以下是一个简单的目标轮廓生长的示例代码:

% 读取图像
I = imread('image.png');

% 转换为灰度图
grayImage = rgb2gray(I);

% 应用阈值处理,将图像二值化
BW = grayImage > 100;

% 标记连通域
[labeledImage, numberOfObjects] = bwlabel(BW);

% 获取每个对象的轮廓信息
stats = regionprops(labeledImage, 'BoundingBox', 'Centroid', 'Perimeter', 'Area');

% 选择感兴趣的对象进行生长
for i = 1:numberOfObjects
    % 获取当前对象的边界框
    bbox = stats(i).BoundingBox;
    
    % 获取当前对象的中心点
    centroid = stats(i).Centroid;
    
    % 创建一个结构体,存储生长后的对象信息
    objectInfo = struct('BoundingBox', [], 'Centroid', [], 'Perimeter', [], 'Area', []);
    
    % 初始化生长区域
    growingRegion = false(size(BW));
    
    % 设置生长区域的初始位置
    growingRegion(bbox(2):bbox(2)+bbox(4)-1, bbox(1):bbox(1)+bbox(3)-1) = true;
    
    % 循环进行生长
    while any(growingRegion)
        % 对生长区域进行腐蚀操作
        se = strel('disk', 1);
        erodedRegion = imerode(growingRegion, se);
        
        % 对腐蚀后的区域进行膨胀操作
        dilatedRegion = imdilate(erodedRegion, se);
        
        % 更新生长区域
        growingRegion = dilatedRegion & ~BW;
        
        % 更新对象信息
        objectInfo.BoundingBox = bbox;
        objectInfo.Centroid = centroid;
        objectInfo.Perimeter = sum(sum(abs(diff(growingRegion))));
        objectInfo.Area = sum(sum(growingRegion));
    end
    
    % 将生长后的对象信息存储起来
    allObjectsInfo(i) = objectInfo;
end

% 显示结果
figure;
subplot(1, 2, 1);
imshow(BW);
title('原始二值化图像');

subplot(1, 2, 2);
hold on;
for i = 1:numberOfObjects
    rectangle('Position', allObjectsInfo(i).BoundingBox, 'EdgeColor', 'r', 'LineWidth', 2);
    plot(allObjectsInfo(i).Centroid(1), allObjectsInfo(i).Centroid(2), 'bx', 'MarkerSize', 10, 'LineWidth', 2);
end
title('目标轮廓生长后的结果');
hold off;

在上述代码中,首先使用rgb2gray函数将彩色图像转换为灰度图,然后使用edge函数进行边缘检测。接着使用imerode函数进行腐蚀操作,以去除小的噪点。最后使用imdilate函数进行膨胀操作,以实现目标轮廓的生长。

需要注意的是,上述代码中的growingRegion变量用于记录每次迭代后的生长区域,而objectInfo结构体则用于存储每个对象的生长信息。在循环结束后,所有对象的生长信息被存储在allObjectsInfo数组中。最后,使用rectangle函数和plot函数将生长后的目标轮廓和中心点显示出来。

可以使用MATLAB的edge函数来检测图像中的边缘。以下是修改后的代码,其中添加了Canny边缘检测的步骤:

% 读取图像
I = imread('image.png');

% 转换为灰度图
grayImage = rgb2gray(I);

% 应用Canny边缘检测算法
BW = edge(grayImage, 'canny');

% 标记连通域
[labeledImage, numberOfObjects] = bwlabel(BW);

% 获取每个对象的轮廓信息
stats = regionprops(labeledImage, 'BoundingBox', 'Centroid', 'Perimeter', 'Area');

% 选择感兴趣的对象进行生长
for i = 1:numberOfObjects
    % 获取当前对象的边界框
    bbox = stats(i).BoundingBox;
    
    % 获取当前对象的中心点
    centroid = stats(i).Centroid;
    
    % 创建一个结构体,存储生长后的对象信息
    objectInfo = struct('BoundingBox', [], 'Centroid', [], 'Perimeter', [], 'Area', []);
    
    % 初始化生长区域
    growingRegion = false(size(BW));
    
    % 设置生长区域的初始位置
    growingRegion(bbox(2):bbox(2)+bbox(4)-1, bbox(1):bbox(1)+bbox(3)-1) = true;
    
    % 循环进行生长
    while any(growingRegion)
        % 对生长区域进行腐蚀操作
        se = strel('disk', 1);
        erodedRegion = imerode(growingRegion, se);
        
        % 对腐蚀后的区域进行膨胀操作
        dilatedRegion = imdilate(erodedRegion, se);
        
        % 更新生长区域
        growingRegion = dilatedRegion & ~BW;
        
        % 更新对象信息
        objectInfo.BoundingBox = bbox;
        objectInfo.Centroid = centroid;
        objectInfo.Perimeter = sum(sum(abs(diff(growingRegion))));
        objectInfo.Area = sum(sum(growingRegion));
    end
    
    % 将生长后的对象信息存储起来
    allObjectsInfo(i) = objectInfo;
end

% 显示结果
figure;
subplot(1, 2, 1);
imshow(BW);
title('Canny边缘检测后的二值化图像');

subplot(1, 2, 2);
hold on;
for i = 1:numberOfObjects
    rectangle('Position', allObjectsInfo(i).BoundingBox, 'EdgeColor', 'r', 'LineWidth', 2);
    plot(allObjectsInfo(i).Centroid(1), allObjectsInfo(i).Centroid(2), 'bx', 'MarkerSize', 10, 'LineWidth', 2);
end
title('目标轮廓生长后的结果');
hold off;

在上述代码中,我们首先使用edge函数进行Canny边缘检测,将检测到的边缘转换为二值图像。然后,我们使用bwlabel函数标记连通域,并使用regionprops函数获取每个对象的轮廓信息。接下来,我们选择感兴趣的对象进行生长,并在循环中不断更新生长区域和对象信息。最后,我们将生长后的对象信息存储起来,并使用rectangle函数和plot函数将生长后的目标轮廓和中心点显示出来。

要实现更精确的边缘检测,可以尝试调整Canny边缘检测函数的参数。Canny边缘检测函数有两个关键参数:低阈值(low threshold)和高阈值(high threshold)。这两个参数控制着边缘检测的灵敏度,即能够检测到的边缘的强度。

以下是如何修改代码以实现更精确的边缘检测:

% 读取图像
I = imread('image.png');

% 转换为灰度图
grayImage = rgb2gray(I);

% 应用Canny边缘检测算法,调整低阈值和高阈值
[BW, edges] = edge(grayImage, 'canny', [lowThreshold highThreshold]);

% 标记连通域
[labeledImage, numberOfObjects] = bwlabel(BW);

% 获取每个对象的轮廓信息
stats = regionprops(labeledImage, 'BoundingBox', 'Centroid', 'Perimeter', 'Area');

% 选择感兴趣的对象进行生长
for i = 1:numberOfObjects
    % 获取当前对象的边界框
    bbox = stats(i).BoundingBox;
    
    % 获取当前对象的中心点
    centroid = stats(i).Centroid;
    
    % 创建一个结构体,存储生长后的对象信息
    objectInfo = struct('BoundingBox', [], 'Centroid', [], 'Perimeter', [], 'Area', []);
    
    % 初始化生长区域
    growingRegion = false(size(BW));
    
    % 设置生长区域的初始位置
    growingRegion(bbox(2):bbox(2)+bbox(4)-1, bbox(1):bbox(1)+bbox(3)-1) = true;
    
    % 循环进行生长
    while any(growingRegion)
        % 对生长区域进行腐蚀操作
        se = strel('disk', 1);
        erodedRegion = imerode(growingRegion, se);
        
        % 对腐蚀后的区域进行膨胀操作
        dilatedRegion = imdilate(erodedRegion, se);
        
        % 更新生长区域
        growingRegion = dilatedRegion & ~BW;
        
        % 更新对象信息
        objectInfo.BoundingBox = bbox;
        objectInfo.Centroid = centroid;
        objectInfo.Perimeter = sum(sum(abs(diff(growingRegion))));
        objectInfo.Area = sum(sum(growingRegion));
    end
    
    % 将生长后的对象信息存储起来
    allObjectsInfo(i) = objectInfo;
end

% 显示结果
figure;
subplot(1, 2, 1);
imshow(BW);
title(['Canny边缘检测后的二值化图像,低阈值:' num2str(lowThreshold) ', 高阈值:' num2str(highThreshold)]);

subplot(1, 2, 2);
hold on;
for i = 1:numberOfObjects
    rectangle('Position', allObjectsInfo(i).BoundingBox, 'EdgeColor', 'r', 'LineWidth', 2);
    plot(allObjectsInfo(i).Centroid(1), allObjectsInfo(i).Centroid(2), 'bx', 'MarkerSize', 10, 'LineWidth', 2);
end
title('目标轮廓生长后的结果');
hold off;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值