这十个GitHub仓库让您精通机器学习

本文介绍了10个GitHub上的关键机器学习资源,包括微软的入门课程、深度学习教程、数学支持、深度学习教科书、在线训练营等,覆盖从基础知识到实战应用,适合学习者和从业者提升技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

掌握机器学习 (ML) 可能看起来势不可挡,但如果有合适的资源,它会变得更容易。GitHub 是广泛使用的代码托管平台,拥有众多有价值的存储库,可以使各个级别的学习者和从业者受益。在本文中,我们回顾了 10 个重要的 GitHub 存储库,它们提供了一系列包含从适合初学者的教程到高级机器学习工具的资源。

1 微软的机器学习入门库

https://github.com/microsoft/ML-For-Beginners

这个为期 12 周的综合课程提供 26 节课程和 52 个测验,使其成为新手的理想起点。它可以作为那些没有机器学习经验的人的起点,并希望使用 Scikit-learn 和 Python 构建核心能力。

每节课都配有补充材料,包括课前和课后测验、书面说明、解决方案、作业和其他资源,以补充实践活动。

2 油管机器学习课程

https://github.com/dair-ai/ML-YouTube-Courses

此 GitHub 存储库充当 YouTube 上托管的优质机器学习课程的精选索引。通过将 Clatech、斯坦福大学和麻省理工学院等提供商提供的各种 ML 教程、讲座和教育系列的链接收集到一个集中位置,该存储库使感兴趣的学习者可以更轻松地找到满足其需求的基于视频的 ML 内容。

这个对于国内的小伙伴可能不太适用。

3 机器学习数学

https://github.com/mml-book/mml-book.github.io

数学是机器学习的支柱,该存储库是“机器学习数学”一书的配套网页。这本书介绍了读者学习机器学习所需的数学概念。作者的目标是提供必要的数学技能来理解先进的机器学习技术,而不是涵盖技术本身。

它涵盖线性代数、解析几何、矩阵分解、向量微积分、概率、分布、连续优化、线性回归、PCA、高斯混合模型和支持向量机。

4 大名鼎鼎的深度学习花书

https://github.com/janishar/mit-deep-learning-book-pdf

深度学习教科书是一本综合资源,旨在帮助学生和从业者进入机器学习领域,特别是深度学习领域。该书于 2016 年出版,为推动人工智能最新进展的机器学习技术提供了理论和实践基础。

麻省理工学院深度学习书籍的在线版本现已完成,并将继续免费在线提供,为人工智能教育的民主化做出了宝贵的贡献。

本书深入涵盖了广泛的主题,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实用方法论。

5 Machine Learning ZoomCamp

https://github.com/DataTalksClub/machine-learning-zoomcamp

Machine Learning ZoomCamp 是一个为期四个月的免费在线训练营,提供机器学习工程的全面介绍。该课程非常适合那些认真追求职业发展的人,它指导学生构建现实世界的机器学习项目,涵盖回归、分类、评估指标、部署模型、决策树、神经网络、Kubernetes 和 TensorFlow Serving 等基本概念。

在课程中,参与者将获得深度学习、无服务器模型部署和集成技术等领域的实践经验。该课程以两个顶点项目结束,使学生能够展示他们新开发的技能。

6 机器学习教程

https://github.com/ujjwalkarn/Machine-Learning-Tutorials

该存储库收集了有关机器学习和深度学习的教程、文章和其他资源。它涵盖了广泛的主题,例如 Quora、博客、采访、Kaggle 竞赛、备忘单、深度学习框架、自然语言处理、计算机视觉、各种机器学习算法和集成技术。

该资源旨在通过代码示例和用例描述提供理论和实践知识。它是一个全面的学习工具,提供了一种多方面的方法来了解机器学习领域。

7 Awesome Machine Learning

https://github.com/josephmisiti/awesome-machine-learning

Awesome Machine Learning 是一系列很棒的机器学习框架、库和软件,非常适合那些希望探索该领域不同工具和技术的人。它涵盖了从 C++ 到 Go 的一系列编程语言的工具,这些工具进一步分为各种机器学习类别,包括计算机视觉、强化学习、神经网络和通用机器学习。

Awesome Machine Learning 是为机器学习从业者和爱好者提供的综合资源,涵盖从数据处理和建模到模型部署和生产的所有内容。该平台可以轻松比较不同的选项,帮助用户找到最适合其特定项目和目标的选项。此外,由于社区的贡献,该存储库仍保持最新状态,提供跨各种编程语言的最新、最好的机器学习软件。

8 斯坦福 CS229 课

https://github.com/afshinea/stanford-cs-229-machine-learning

该存储库提供了斯坦福大学 CS 229 课程中涵盖的机器学习概念的浓缩参考和复习。它旨在将所有重要概念整合到 VIP 备忘单中,涵盖监督学习、无监督学习和深度学习等主要主题。该存储库还包含 VIP 复习,重点介绍概率、统计、代数和微积分的先决条件。此外,还有一个超级 VIP 备忘单,将所有这些概念编译成学习者可以随时掌握的终极参考资料。

通过将这些要点、定义和技术概念结合在一起,目标是帮助学习者彻底掌握 CS 229 中的机器学习主题。备忘单可以将讲座和教科书材料中的重要概念总结为技术面试的浓缩参考资料。

9 机器学习面试

https://github.com/khangich/machine-learning-interview

它提供了全面的学习指南和资源,帮助你准备 Facebook、亚马逊、苹果、谷歌、微软等主要科技公司的机器学习工程和数据科学面试。

涵盖的关键主题:

  • LeetCode 问题按类型分类(SQL、编程、统计)。

  • ML 基础知识,例如逻辑回归、KMeans、神经网络。

  • 从激活函数到 RNN 的深度学习概念。

  • 机器学习系统设计,包括有关技术债务和机器学习规则的论文

  • 值得阅读的经典 ML 论文。

  • 机器学习生产挑战,例如 Uber 的扩展和生产中的深度学习

  • 常见的 ML 系统设计面试问题,例如 视频/提要推荐、欺诈检测。

  • YouTube、Instagram 推荐的示例解决方案和架构。

该指南整合了吴恩达等顶级专家的材料,并包括顶级公司提出的真实面试问题。它的目的是提供学习计划,以便在各种大型科技公司进行机器学习面试。

10 Awesome Production Machine Learning

https://github.com/EthicalML/awesome-production-machine-learning

该存储库提供了精选的开源库列表,以帮助在生产环境中部署、监控、版本、扩展和保护机器学习模型。它涵盖了生产机器学习的各个方面,包括:

  • 解释预测和模型

  • 隐私保护机器学习

  • 模型和数据版本控制

  • 模型训练编排

  • 模型服务和监控

  • 自动机器学习

  • 数据管道

  • 数据标签

  • 元数据管理

  • 计算分布

  • 模型序列化

  • 优化计算

  • 数据流处理

  • 异常值和异常检测

  • 特征库

  • 对抗鲁棒性

  • 数据存储优化

  • 数据科学笔记本

  • 神经搜索

总结

无论你是初学者还是经验丰富的 ML 从业者,这些 GitHub 存储库都提供了丰富的知识和资源,可加深你对机器学习的理解和技能。从基础数学到先进技术和实际应用,这些存储库对于任何认真掌握机器学习的人来说都是必不可少的工具。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值