前言
在这个实用的动手指南中,了解如何将生成媒体技术与 AI 结合使用来创建新颖的图像或音乐。数据科学家和软件工程师将了解最先进的生成模型的工作原理,如何根据您的需求对其进行微调和调整,以及如何组合现有构建块以在不同领域创建新模型和创意应用程序。
本书是一本实用的生成式人工智能指南,重点介绍转换器和扩散模型。它涵盖了生成式人工智能项目的生命周期,包括用例定义、模型选择、微调和部署。本书旨在帮助读者将生成式人工智能应用于他们的业务用例,并提供有关模型选择、微调和与现有软件生态系统集成的实用建议。
下载当前版本: 完整PDF书籍链接获取,可以扫描下方二维码免费领取👇👇👇
目录
第一章、扩散模型
- 关键见解:迭代细化
- 训练扩散模型
- 深入:噪音时间表
- 深入了解:UNets 和替代方案
- 深入:目标和预处理
- 项目时间:训练您自己的扩散模型
- 摘要
- 参考
第二章、构建稳定扩散
- 添加控制:条件扩散模型
- 提高效率:潜在扩散
- Stable Diffusion:深入组件
- 全部放在一起:带注释的采样文本到图像模型的循环
- 文本到图像模型的训练数据(待定)
- 开放数据,开放模型
作者总结