一、大模型业务需求调研工作思路图
需求侧
- 需求探索三原则:
-
所有需求都有目的,需与提出者沟通 “为什么”;
-
所有目的存在边界,需明确自身所处位置;
-
所有边界有实现路径,需寻找最佳实践路径。
- 需求处理流程:
-
需求场景化:以 “通过自然语言生成图表” 为例,将抽象需求转化为具体场景。
-
实现需求路径:拆解为 “拿到准确数据→理解语言意图→生成图表”,其中涉及自然语言转 SQL、SQL 查询数据、数据生成图表等步骤,最终实现 ChatBI。
-
需求功能化:将需求转化为可执行的功能(如 ChatBI)。
-
需求扩展:从 ChatBI 扩展到多模态智能 BI,提升应用范围与能力。
技术侧
-
工具选型:提供 Diffy、Milvus/neo4j、vLLM 等工具,支持不同技术实现。
-
所需工具:包括大模型应用开发平台、向量库 / 图形化数据库、大模型运行工具,支撑技术落地。
-
技术栈与理论:
-
核心技术栈基于大语言模型(LLM)、向量库、知识库及检索增强生成(RAG)等理论,RAG 可弥补大模型在知识时效性、专业性上的局限。
-
技术理论涉及大语言模型、嵌入模型、时序数据库等,同时关注模型微调、提示词工程、数据标注、多模态技术(如图像、语音模型)等关键点,确保技术实现的精准性与有效性。
这张图通过需求与技术的双向映射,构建了从需求分析、功能实现到技术支撑的完整逻辑,体现了如何将用户需求系统化地转化为基于大模型的解决方案。
二、AI大模型相关技术架构图
这张 “AI大模型相关技术全景图” 采用分层设计,清晰呈现了从底层硬件到上层应用的完整技术体系,各层功能如下:
-
基础设施层:提供基础硬件资源,包括 GPU/TPU/ 昇腾(高性能计算)、CPU、内存(RAM)、存储(HDD)和网络,是整个架构的运行基石。
-
云原生层:采用 Docker(容器化技术)和 K8S(容器编排工具),实现模型与应用的高效部署、管理及弹性扩展,确保系统稳定性与可维护性。
-
模型层:包含各类核心模型,如大语言模型(LLM)、视觉 - 语言模型、语音 - 语言模型、图像识别 / OCR 模型、召回排序小模型、智能文档理解模型及多模态检测分析模型,提供多样化的智能处理能力。
-
应用技术层:涵盖实现应用的关键技术,如 Agent / 智能体(自主决策实体)、RAG / 检索增强生成(结合检索与生成)、Prompt 提示词工程(优化输入指令)、Fine-tuning 微调(模型个性化训练)、COT / 思维链(分步推理),以及数据抓取、清洗、向量处理和访问控制,支撑上层应用的落地。
-
应用架构层:包括工程技术架构(技术实现方案)、业务架构(业务逻辑设计)和云原生架构(云环境适配设计),从宏观层面规划应用的整体结构与实现路径。
-
应用层:呈现具体业务场景,如 RAG 类应用(企业知识库)、Agent 类应用(多智能体、财务分析、合同对比)、OLTP 类应用(智能客户、文本优化助手)、OLAP 类应用(企业级报告生成、NLP2SQL BI 可视化系统),直接服务于用户需求。
该架构通过分层协作,从硬件支撑到具体应用,形成一个完整且逻辑清晰的技术体系,确保 AI 大模型在不同场景下的高效运行与落地。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
