前言
想一下,一个刚学数学的小学生(小模型SLM),虽然做题快,但遇到复杂问题就容易卡壳。而博士生导师(大模型LLM)知识渊博,但计算成本高。
论文:Guiding Reasoning in Small Language Models with LLM Assistance
链接:https://arxiv.org/pdf/2504.09923v1
论文的突破点在于:让小学生自己尝试解题,只在关键步骤(比如解方程或逻辑推理)时,导师才出手指导。这种“外挂大脑”模式,就是SMART框架的核心。
小模型自主推理,大模型在错误步骤处介入
SMART框架:像老师辅导学生一样工作
三步流程
-
第一步:小模型自己写解题步骤(比如:“先算加法,再算乘法”)。
-
第二步:给每一步“打分”——用两种方法:
-
- PRM分数:像老师批改作业,直接判断对错;
- TLC分数:看小模型自己有多自信(比如概率高低)。
-
第三步:分数低于阈值时,召唤大模型修正这一步。
生成推理路径的概率公式:
简单说,就是每一步都依赖前面的步骤,像搭积木一样。
得分阈值τ:决定是否需要大模型介入的“分数线”。
框架流程图:生成→打分→修正循环
实验:小模型逆袭,接近大模型水平
论文用500道数学题测试,发现:
- 单次生成(N=1):SMART让小模型正确率提升10-20%。
- 多次生成(N=32):小模型能达到大模型90%以上的水平!
- 越难的题越明显:比如最高难度题(Lv5),小模型正确率从20%飙升至50%+。
不同难度等级下的性能对比表
关键发现
- 大模型只需修改约20%的步骤,就能大幅提升效果。
- 成本优势:相比全程用大模型,SMART的LLM调用量减少90%。
未来手机也能跑高级AI?
- 手机本地运行小模型,遇到复杂问题时联网求助大模型。
- 既保证响应速度,又降低流量费用。
展望
- 未来可能结合强化学习,动态调整“辅导频率”。
- 隐私保护:敏感数据留在本地,只上传必要问题。
启示:“团队协作”新思路
SMART框架揭示了一个趋势:大小模型协同,而非取代。
- 小模型的优势:速度快、成本低;
- 大模型的价值:关键时刻提供深度推理。
这种“师徒制”或许会成为AI落地的新范式。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
