【笔记】数论基础

数论是研究整数性质的数学分支,涉及分解质因数、约数、最大公约数、最小公倍数、欧拉函数、同余等概念。本文介绍了欧拉定理、费马小定理和裴蜀定理等基础理论,并详细阐述了如何找到整数的乘法逆元。
摘要由CSDN通过智能技术生成

数论基础

定义

数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼 ζ ζ ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。(摘自百度百科

分解质因数

对于一个合数 n n n,可以把它分解成几个质数的乘积。
n = p 1 c 1 × p 2 c 2 × . . . × p m c m = ∏ i = 1 m p i c i n=p_1^{c_1} \times p_2^{c_2} \times ...\times p_m^{c_m}=\prod_{i=1}^m p_i^{c_i} n=p1c1×p2c2×...×pmcm=i=1mpici
其中, p i p_i pi n n n的质因子, c i c_i ci为每个质因子的指数, m m m n n n的质因子的个数。

约数

b ∣ a b|a ba b b b整除 a a a),则称 b b b a a a的约数。

对于一个正整数 n n n,它的正整数集合为:

N = { p 1 b 1 , p 2 b 2 , p 3 b 3 , . . . , p m b m } N=\left \{ p_1^{b_1},p_2^{b_2},p_3^{b_3},...,p_m^{b_m} \right \} N={p1b1,p2b2,p3b3,...,pmbm}
其中, 0 ⩽ b i ⩽ c i 0 \leqslant b_i \leqslant c_i 0bici

它的正约数个数为:

f ( n ) = ( c 1 + 1 ) × ( c 2 + 1 ) × ( c 3 + 1 ) × . . . × ( c m + 1 ) = ∏ i = 1 m ( c i + 1 ) f(n)=(c_1+1) \times (c_2+1) \times (c_3+1) \times ... \times (c_m+1)=\prod_{i=1}^m (c_i+1) f(n)=(c1+1)×(c2+1)×(c3+1)×...×(cm+1)=i=1m(ci+1)

它的正约数和为:

( p 1 0 + p 1 1 + p 1 2 + . . . . . . p 1 c 1 ) ∗ . . . . . . ∗ ( p m 0 + p m 1 + p m 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p m c m ) = ∏ i = 1 m ( ∑ j = 0 c i p i j ) (p_1^0+p_1^1+p_1^2+......p_1^{c_1})*......*(p_m^0+p_m^1+p_m^2+······p_m^{c_m})=\prod _{i=1}^{m}\left(\sum _{j=0}^{c_i}p_i^j\right) (p10+p11+p12+......p1c1)......(pm0+pm1+pm2+pmcm)=i=1m(j=0cipij)

最大公约数与最小公倍数

最大公约数 ( g c d ) (gcd) (gcd):两个或多个整数共有的约数中最大的一个。
最小公倍数 ( l c m ) (lcm) (lcm):两个或多个整数共有的倍数中最小的一个。

最大公约数与最小公倍数与最小公倍数的性质:
  • a × b = g c d ( a , b ) × l c m ( a , b ) a \times b = gcd(a,b) \times lcm(a,b) a×b=gcd(a,b)×lcm(a,b)
  • m , a , b m,a,b m,a,b为正整数,则 l c m ( m a , m b ) = m × l c m ( a , b ) lcm(ma,mb)=m \times lcm(a,b) lcm(ma,mb)=m×lcm(a,b)
  • g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)=gcd(b,a \bmod b) gcd(a,b)=gcd(b,amodb),(欧几里得算法、辗转相除法)。
  • g c d ( a , b ) = g c d ( b , a − b ) = g c d ( a , a − b ) gcd(a,b)=gcd(b,a-b)=gcd(a,a-b) gcd(a,b)=gcd(b,ab)=gcd(a,ab)
  • g c d ( 2 a , 2 b ) = g c d ( a , b ) gcd(2a,2b)=gcd(a,b) gcd(2a,2b)=gcd(a,b)

欧拉函数

一个正整数 n n n的欧拉函数值 φ ( n ) \varphi (n) φ(n)等于小于等于它的与它互质的数的个数。
φ ( n ) = n × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × ( 1 − 1 p 3 ) × . . . × ( 1 − 1 p m ) = n × ∏ i = 1 m ( 1 − 1 p i ) \varphi (n)=n \times (1-\frac{1}{p_1}) \times (1-\frac{1}{p_2}) \times (1-\frac{1}{p_3}) \times ... \times (1-\frac{1}{p_m})=n \times \prod_{i=1}^m (1-\frac{1}{p_i}) φ(n)=n×(1p11)×(1p21)×(1p31)×...×(1pm1)=n×i=1m(1pi1)

欧哈函数的证明:

将正整数 n n n分解质因数后我们可以得到:
n = p 1 c 1 × p 2 c 2 × . . . × p m c m = ∏ i = 1 m p i c i n=p_1^{c_1} \times p_2^{c_2} \times ...\times p_m^{c_m}=\prod_{i=1}^m p_i^{c_i} n=p1c1×p2c2×...×pmcm=i=1mpici
对于每个质因子 p i p_i pi,除了它的一倍以外,它的所有倍数都不与 n n n互质。
由此我们可以得出,对于每个质因子 p i p_i pi,不与 n n n互质的数的个数有 n p i \frac{n}{p_i} pin个,与 n n n互质的数的个数有 n − n p i n-\frac{n}{p_i} npin个。
把这个式子提取公因式,可以得到 n × ( 1 − 1 p i ) n \times (1-\frac{1}{p_i}) n×(1pi1)
对每个质因子 p i p_i pi都做相同的处理,就得到了欧拉函数 φ ( n ) = n × ∏ i = 1 m ( 1 − 1 p i ) \varphi (n)=n \times \prod_{i=1}^m (1-\frac{1}{p_i}) φ(n)=n×i=1m(1pi1)

欧拉函数的性质:
  • φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1
  • p p p为质数,则 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1
  • p p p为质数,对于 n = p k n=p^k n=pk,有 φ ( n ) = p k − p k − 1 = ( p − 1 ) × p k − 1 \varphi(n)=p^k-p^{k-1}=(p-1) \times p^{k-1} φ(n)=pkpk1=(p1)×pk1
  • φ ( a × b ) = φ ( a ) × φ ( b ) \varphi(a \times b)=\varphi(a) \times \varphi(b) φ(a×b)=φ(a)×φ(b)
  • 对于质数 p p p,若 n   m o d   p = 0 n \bmod p=0 nmodp=0,则 φ ( n × p ) = φ ( n ) × p \varphi(n \times p)=\varphi(n) \times p φ(n×p)=φ(n)×p;若 n   m o d   p ≠ 0 n \bmod p \neq 0 nmodp=0,则 φ ( n × p ) = φ ( n ) × ( p − 1 ) = φ ( n ) × φ ( p ) \varphi(n \times p)=\varphi(n) \times (p-1)=\varphi(n) \times \varphi(p) φ(n×p)=φ(n)×(p1)=φ(n)×φ(p)
  • n > 1 n>1 n>1,则 [ 1 , n ] [1,n] [1,n]中与 n n n互质的数的和为 n × φ ( n ) 2 n \times \frac{\varphi(n)}{2} n×2φ(n)

同余

对于一个正整数 m , a , b m,a,b m,a,b,若满足 m ∣ ( a − b ) m|(a-b) m(ab)(即 a   m o d   m = b   m o d   m a \bmod m = b \bmod m amodm=bmodm),则称整数 a a a b b b对模 m m m同余,记作 a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm)

m o d mod mod n n n,则根据余数可将所有的整数分为 n n n类,把所有与整数 a   m o d   n a \bmod n amodn同余的整数构成的集合叫做 ( m o d n ) \pmod n (modn)的一个剩余类。

对于集合 N = { r 1 , r 2 , r 3 , . . . , r φ ( n ) } N=\left \{ r_1,r_2,r_3,...,r_{\varphi(n)} \right \} N={r1,r2,r3,...,rφ(n)},集合中的每个质数均与 n n n,则称该集合为 n n n的既约剩余系。

同余定理:
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),当且仅当 m ∣ ( a − b ) m|(a-b) m(ab)
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),当且仅当存在 a = b + k m a=b+km a=b+km
同余的性质:
  • a ≡ a ( m o d m ) a\equiv a \pmod m aa(modm)
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),则 b ≡ a ( m o d m ) b\equiv a \pmod m ba(modm)
  • a ≡ b ( m o d m ) , b ≡ c ( m o d m ) a\equiv b \pmod m,b\equiv c \pmod m ab(modm),bc(modm),则 a ≡ c ( m o d m ) a\equiv c \pmod m ac(modm)
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),则 a + c ≡ b + c ( m o d m ) a+c\equiv b+c \pmod m a+cb+c(modm)
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),则 a × c ≡ b × c ( m o d m ) a\times c\equiv b\times c \pmod m a×cb×c(modm)
  • a ≡ b ( m o d m ) a\equiv b \pmod m ab(modm),则 a c ≡ b c ( m o d m ) a^c\equiv b^c \pmod m acbc(modm)
  • a   m o d   p = x , a   m o d   q = x a\bmod p=x,a\bmod q=x amodp=x,amodq=x,则 a   m o d   ( p q ) = x a \bmod (pq) =x amod(pq)=x

欧拉定理

g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1 a a a b b b互质),则 a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n) }\equiv 1 \pmod n aφ(n)1(modn)

费马小定理

p p p为质数,对于正整数 a a a,有 a p ≡ a ( m o d p ) a^p \equiv a \pmod p apa(modp)

裴蜀定理

对于正整数 a , b a,b a,b,一定存在一对正整数 x , y x,y x,y,使 a × x + b × y = g c d ( a , b ) a\times x+b\times y=gcd(a,b) a×x+b×y=gcd(a,b)

扩展欧几里得

扩展欧几里得算法用于求给定 a , b a,b a,b的方程 a × x + b × y = g c d ( a , b ) a\times x+b\times y=gcd(a,b) a×x+b×y=gcd(a,b)的解。

  • b = 0 b=0 b=0时,有 x = 1 , y = 0 x=1,y=0 x=1,y=0,使 a × x + b × y = g c d ( a , b ) a\times x+b\times y=gcd(a,b) a×x+b×y=gcd(a,b)
  • b > 0 b>0 b>0时,因为 g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)=gcd(b,a \bmod b) gcd(a,b)=gcd(b,amodb)所以 a × x + b × y = b × x ′ + ( a   m o d   b ) y ′ a\times x+b\times y=b\times x'+(a \bmod b)y' a×x+b×y=b×x+(amodb)y化解得 a × x + b × y = b × x + ( a − b × a b ) × y ′ = a × y ′ + b × ( x ′ − a b × y ′ ) a\times x+b\times y=b\times x+(a-b\times \frac{a}{b} )\times y'=a\times y'+b\times (x'- \frac{a}{b} \times y') a×x+b×y=b×x+(ab×ba)×y=a×y+b×(xba×y)
    { x = y ′ y = x ′ − a b × y ′ . \begin{cases}x=y'\\ y=x'-\frac{a}{b} \times y'\\ \end{cases}. {x=yy=xba×y.
    即为 x , y x,y x,y的解。
扩展欧几里得的通解:

{ x = x 0 + b g c d ( a , b ) × t y = y 0 − a g c d ( a , b ) × t \begin{cases} x = x_0 + \frac{b}{gcd(a,b)} \times t \\ y = y_0 - \frac{a}{gcd(a,b)} \times t \\ \end{cases} {x=x0+gcd(a,b)b×ty=y0gcd(a,b)a×t
其中, x 0 , y 0 x_0,y_0 x0,y0为方程 a × x + b × y = g c d ( a , b ) a\times x+b\times y=gcd(a,b) a×x+b×y=gcd(a,b)的特解。

逆元

b , m b,m b,m互质,且 b ∣ a b|a ba,则存在 x x x,使 a b ≡ a × ( m o d m ) \frac{a}{b} \equiv a \times \pmod m baa×(modm),称 x x x b b b ( m o d m ) \pmod m (modm)乘法逆元,记为 b − 1 ( m o d m ) b^{-1}\pmod m b1(modm)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值