NLP backbone常用的噪声训练方法

本文介绍了自然语言处理中常用的噪声训练方法,包括Token Masking、Token Deletion、Text Infilling、Sentence Permutation和Document Rotation。这些方法通过引入不同的数据扰动,旨在提升模型的预测能力和对缺失信息的推理能力。
摘要由CSDN通过智能技术生成
图1. 可组合的几种噪声变换(图片出处:https://arxiv.org/pdf/1910.13461.pdf)

继续补充中。

样例句子:A B C. D E.(第一句:A B C. 第二句:D E.)

训练目标均为降低真实值与预测值之间的交叉熵损失。

1. Token Masking(token掩码)

GT: A B C . D E .

After: A [MASK] C . [MASK] E .

        其中,Token被随机采样,并被替换为[MASK]元素。训练的目标为输入“A [MASK] C . [MASK] E .”预测为“A B C . D E .”。

2. Token Deletion(token删除)

GT: A B C . D E .

After: A . C . E .

        其中,Token被随机采样,并被删除。与1中所提的token掩码方式不同的是,模型必须确认哪些位置缺少输入。训练的目标为输入“A . C . E .”,确定目标生成的位置,预测为“A B C . D E .”。

3. Text Infillin

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值