​GENIUS: 根据草稿进行文本生成的预训练模型,可用于多种NLP任务的数据增强...

GENIUS是一个预训练模型,专注于基于草稿的文本生成和数据增强。它采用极端选择性遮罩策略进行预训练,通过抽取关键词并使用MASK token构造sketch,提高了文本重构能力。这种方法生成的样本在保留核心语义的同时,增加了多样性,适用于多种NLP任务的数据增强,如情感分类、主题分类、实体识别和机器阅读理解。实验表明,GENIUS在低资源设置下也能显著提升模型性能,特别是在out-of-distribution任务中。此外,GeniusAug是一种利用GENIUS进行数据增强的新方法,通过目标感知的sketch提取和属性控制,提高了样本质量和多样性。
摘要由CSDN通过智能技术生成

9a73e2cb8dc648b5a82096defc703e93.gif

©PaperWeekly 原创 · 作者 | 郭必扬 

单位 | 上海财经大学信息管理与工程学院AI Lab

47b7f578e824acded52e083e685e7c8c.png

论文标题:

GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation

论文作者:

Biyang Guo, Yeyun Gong, Yelong Shen, Songqiao Han, Hailiang Huang, Nan Duan, Weizhu Chen

作者单位:

上海财经大学信息管理与工程学院 AI Lab;微软亚洲研究院;微软 Azure AI

论文链接:

https://arxiv.org/abs/2211.10330

Github链接:

https://github.com/beyondguo/genius(更多相关工作见:https://github.com/microsoft/SCGLab)

d4f088f2475f80aa64e95f26e81027e2.png

论文简介

本文提出了一种基于草稿进行文本生成(sketch-based text generation)的预训练模型 GENIUS。GENIUS 模型可以根据你给定的少量的关键词、短语、片段,进行文本补全,从而构成一个完整、连贯的段落。这类似于我们人类写作时先打草稿再进行创作的过程。GENIUS 使用了大量通用语料进行预训练,在预训练中使用了一种 extreme-and-selective masking 的策略,这些使得 GENIUS 有强大的生成能力。下面是一些例子:

05ab1e215212a0d8fe64cf8d5ebeea26.png

基于GENIUS的生成能力,本文还提出了一种新颖的数据增强方法——GeniusAug。GeniusAug 先从训练样本中抽取一个目标相关的 sketch,然后输入进 GENIUS 模型中进行新样本的生成。

相比于传统的数据增强方法,GeniusAug 既能够保存原样本的核心语义,还能够带来很大的多样性,从而使得模型在 in-distribution(ID)和 out-of-distribution(OOD)的情况都能得到显著的性能提升。实验验证 GeniusAug 可以通用于情感分类、主题分类、实体识别、机器阅读理解等多种 NLP 任务的数据增强。

2f2f248e27bdcc46d1a4072ea4537074.png

论文的代码和模型都已经开源,作者已经搭建了一个在线 demo,方便大家测试:

https://huggingface.co/spaces/beyond/genius

5c856ca9aec8635279f4e3473e03a485.png

b87fec53ccebbc856d1b818597a050a9.png

GENIUS的预训练

GENIUS 采用了一种 reconstruction from sketch 的预训练方式。先从完整文本中抽取一个 sketch,然后让模型根据 sketch 去重构这个文本。GENIUS 使用 BART [1] 模型进行初始化,在 C4 语料库上进行大规模预训练。

这里面的关键就是如何构造这样的 sketch,作者使用了一个 extraction-projection-masking 的 pipeline 来进行 sketch 构造:

1. extraction 使用无监督关键词抽取工具 YAKE [2],抽取最大为 3-gram 的关键词/短语,占比约为原文的 20%。这里抽取 3-gram 是为了抽取更大粒度的信息,从而降低重构难度。

2. projection 把抽取出来的关键信息,按照原文的位置、出现次数进行映射,且允许不同词语的重叠。

3. masking 把剩下的部分,使用单个的 MASK token 进行替换。

通过这样的三步,sketch 中就会保留原文的不同粒度的关键信息。经过作者统计,被 MASK 掉的内容平均占全文的 73%

这个 sketch 的抽取步骤看似很简单,但是其中几个设计很关键

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值