GarfieldEr007的专栏

勤奋治学 深度思考 静心钻研 先苦后甜

简明机器学习教程——实践篇(一):从感知机入手

有那么一段时间不出干货了,首页都要被每周歌词霸占了,再不写一点东西都要变成咸鱼了。进入正题。本篇教程的目标很明显,就是实践。进一步的来说,就是,当你学到了一些关于机器学习的知识后,怎样通过实践以加深对内容的理解。这里,我们从李航博士的《统计学习方法》的第2章感知机来做例子,由此引出大致的学习方法。...

2017-04-16 16:53:16

阅读数:1047

评论数:0

近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)

本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM...

2017-03-08 22:55:25

阅读数:1722

评论数:0

浅谈L0,L1,L2范数及其应用

原文传送门:浅谈L0,L1,L2范数及其应用 浅谈L0,L1,L2范数及其应用 在线性代数,函数分析等数学分支中,范数(Norm)是一个函数,其赋予某个向量空间(或矩阵)中的每个向量以长度或大小。对于零向量,另其长度为零。直观的说,向量或矩阵的范数越大,则我们可以说这个向量或矩阵也就越大。...

2016-05-28 17:48:09

阅读数:2794

评论数:0

如何准备机器学习工程师的面试 ?

周开拓 ,推荐系统PM@淘宝 收录于 编辑推荐 •505 人赞同 机器学习方面的面试主要分成三个部分: 1. 算法和理论基础 2. 工程实现能力与编码水平 3. 业务理解和思考深度  1. 理论方面,我推荐最经典的一本书《统计学习方法》,这书可能不是最全的,但是讲得最精髓...

2016-05-25 16:33:26

阅读数:1807

评论数:0

机器学习该怎么入门?

阿猫Knight ,Perfekt 张逸萌 等 432 人赞同 我也谈谈自己的经验。 机器学习说简单就简单,说难就难,但如果一个人不够聪明的话,他大概很难知道机器学习哪里难。基本上要学习机器学习,先修课程是algebra, calculus, probability th...

2016-05-25 15:15:40

阅读数:3476

评论数:1

K-means Algorithm 聚类算法

在监督学习中,有标签信息协助机器学习同类样本之间存在的共性,在预测时只需判定给定样本与哪个类别的训练样本最相似即可。在非监督学习中,不再有标签信息的指导,遇到一维或二维数据的划分问题,人用肉眼就很容易完成,可机器就傻眼了,图(1)描述得很形象。 但处理高维度的数据,人脑也无能为力了,...

2016-05-22 17:52:49

阅读数:6795

评论数:0

SVM算法的生动讲解

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com   前言:     又有很长的一段时间没有更新...

2016-05-22 17:43:13

阅读数:9618

评论数:3

机器学习的最佳入门学习资源

这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。 文章里到底写什么、不写什么,这个问题真的让我很烦恼。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最...

2016-05-09 20:15:36

阅读数:1637

评论数:1

OWL-QN算法

一、BFGS算法       算法思想如下:            Step1   取初始点,初始正定矩阵,允许误差0">,令;            Step2   计算;            Step3   计算0">,使得             ...

2016-05-08 13:09:41

阅读数:578

评论数:0

生成模型与判别模型

生成模型与判别模型 zouxy09@qq.com http://blog.csdn.net/zouxy09        一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否。若有错误,还望各位前辈不吝指正,以免小弟一错再错。在此谢过。   一、决策函数Y...

2016-05-08 13:08:22

阅读数:578

评论数:0

无约束优化方法读书笔记—入门篇

声明: 1)该博文的绝大部分内容抄自课本《最优化理论与方法》,作者袁亚湘,孙文瑜 2)该博文只是列出优化算法大体框架,没有深入去推导各种公式。 2)本文仅供学术交流,非商用,有些部分本来就是直接从课本复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满...

2016-05-08 13:06:49

阅读数:854

评论数:0

从广义线性模型到逻辑回归

声明: 1)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,...

2016-05-08 13:02:34

阅读数:1379

评论数:1

EM算法学习笔记

EM算法学习笔记 标签: 机器学习数据挖掘十大算法EM李航 2014-08-23 15:04 3797人阅读 评论(5) 收藏 举报 分类: 数据挖掘基础知识(6) 版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[+] EM算法学习笔记 声...

2016-05-08 13:01:19

阅读数:640

评论数:0

LDA入门级学习笔记

声明: 1)该博文是多位博主以及科学家所无私奉献的论文资料整理的。具体引用的资料请看参考文献。具体的版本声明也参考原文献 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,并联...

2016-05-08 13:00:28

阅读数:821

评论数:0

图˙谱˙马尔可夫过程˙聚类结构----by林达华

这又是林达华的一篇好文,将四个概念在某个方面解释的很清楚,特别是特征值和特征向量的意义,让人豁然开朗。         原文已经找不到了,好像是因为林达华原来的live博客已经失效,能找到的只有网上转载的文章(本来还想把他的博客看个遍)。林本人的数学功底之强,有时候会让我们这些搞CV、ML的人趁...

2016-05-08 11:57:10

阅读数:764

评论数:0

机器学习常见算法个人总结(面试用)

朴素贝叶斯 参考[1] 事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生A [Math Processing Error]P(A∩B)=P(A)∗P(B|A)=P(B)∗P(A|B) 所以有: [Math Processing Error]...

2016-05-07 19:13:33

阅读数:1372

评论数:0

洗牌算法shuffle

对这个问题的研究始于一次在群里看到朋友发的洗牌面试题。当时也不知道具体的解法如何,于是随口回了一句:每次从剩下的数字中随机一个。过后找相关资料了解了下,洗牌算法大致有3种,按发明时间先后顺序如下: 一、Fisher–Yates Shuffle 算法思想就是从原始数组中随机抽取一个新的数...

2016-04-29 12:53:24

阅读数:951

评论数:0

白话一下什么是决策树模型

有一天,小明无聊,对宿舍玩CS的舍友进行统计,结果刚记下四行,被舍友认为影响发挥,给踢到床下去了,让我 们看看可怜的小明的记录: ----------------------------- 武器 | 子弹数量 | 血 | 行为 ----------------------------- 机枪 | ...

2016-04-19 11:17:04

阅读数:2229

评论数:0

数据分类:决策树Decision Tree

背景 决策树(decision tree)是一种基本的分类和回归(后面补充一个回归的例子?)方法,它呈现的是一种树形结构,可以认为是if-then规则的集合。其其主要优点是模型具有很好的可读性,且分类速度快;缺点是可能会产生过度匹配的问题(所以一般都会有决策树的剪枝过程)。决策树在学习时,利...

2016-04-19 11:13:40

阅读数:4165

评论数:0

机器学习10大经典算法

机器学习10大经典算法 1、C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; ...

2016-04-17 13:03:18

阅读数:695

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭