高等数学:第五章 定积分(1)概念与性质 中值定理 微积分基本公式

§5.1  定积分的概念

一、从阿基米德的穷竭法谈起

【引例】从曲线与直线 所围图形的面积

 如图:在区间  上插入  个等分点 ,得曲线上点 ,过这些点分别向轴,轴引垂线,得到阶梯形。它们的面积分别为:

 

 

 

故可得到面积值为  

为了便于理解阿基米德的思想,我们先引入曲边梯形的概念。

所谓曲边梯形是指这样的图形,它有三条边是直线段,其中两条是平行的,第三条与前两条垂直叫做底边,第四条边是一条曲线弧叫做曲边,这条曲边与任意一条垂直于底边的直线至多只交于一点。

根据这一定义,引例所求图形的面积便是一个曲边梯形的面积。运行程序gs0501.m,可更深刻地了解阿基米德穷竭法思想。

二、曲边梯形的面积计算

设连续函数,求由曲边,直线及 轴所围成的曲边梯形的面积

如图,在区间上任意地插入个分点

区间分划成  个小区间 ,且记小区间的长度为

过每个分点作平行于轴的直线段,这些直线段将曲边梯形分划成个窄小的曲边梯形,用记第  个窄小的曲边梯形的面积。

(由于曲边梯形的高在上是连续变化的,在很短小的一段区间上它的变化也很小,即可近似地视为不变。因此,在每个小区间上,可用其中某一点的高来近似代替该小区间上小曲边梯形的变化高,用相应的小矩形面积来近似小曲边梯形的面积。)

具体地

对第  个窄小曲边梯形,在其对应区间上任意地取一点,以作为近似高,以矩形面积近似

即     

于是,

很明显地

小区间的长度越小,近似程度就越好;要使得近似程度越好,只需都越来越小。因此,为了得到面积的精确值,我们只需将区间无限地细分,使得每个小区间的长度都趋向于零。

若记   ,则每个小区间的长度趋向于零价于 

从而                                 (1)

三、变速直线运动的路程

设某物体作直线运动,已知速度是时间间隔上的连续函数,且,求物体在时间间隔内所经过的路程。

在时间间隔内任意地插入个分点

将分划成个时间区间

各时间区间的长度依次为

记各时间区间内物体运动所经过的路程依次为

在时间间隔, 物体所经过的路程的近似值为

  

即:将物体在上的速度视为不变的,以来近似代替。很自然地,当这一时间间隔段很短时,这种近似是合理的。

于是可给出的近似值     

为得到的精确值, 只需让每个小时间间隔段的长度均趋向于零。

若记  

则                                      (2)

上述两例, 尽管其实际意义不同, 但有两点是一致的。

1、曲边梯形的面积值由高的变化区间来决定;

变速直线运动的路程由速度的变化区间来决定。

2、计算的方法、步骤相同,且均归结到一种结构完全相同的和式极限。

抛开这些问题的具体实际意义, 抓住它们在数量关系上共同的本质加以概括, 我们可给出定积分概念

四、定积分的定义

设函数上有界, 在中任意插入个分点

把区间分划成  个小区间

各区间的长度依次为

在每个小区间上任取一点 

作函数值与小区间长度的乘积  

作和式 

若不论对区间上怎样的分法,

也不论对小区间上的点怎样的取法,

只要当时, 和总趋向于确定的值

我们称这个极限值为函数在区间上的定积分。

记作   

即  

其中叫做被积函数叫做被积表达式

   叫做积分变量;    叫做积分区间

   叫做积分下限;        叫做积分上限

 叫做上的积分和式

如果上的定积分存在,我们就说上可积。

对定积分的定义, 我们给出两点重要的注解:

1、定积分的几何意义

上,时,表示由曲线,直线轴所围成的曲边梯形的面积。

上,时,表示该曲边梯形面积的负值。

因此,定积分是一个数值。

2、定积分与积分变量无关

由定积分的几何意义可知:

定积分与被积函数及积分区间有关。

如果既不改变被积函数,也不改变积分区间 ,而只是将变量改写成其它字母,如,这时定积分的值仍不变。即有

五、定积分的存在定理

【定理一】设在区间上连续, 则上可积。

【定理二】设在区间上有界, 且只有有限个间断点, 则上可积。

六、用定义求定积分的典型例子

【例1】  求 

解:是连续的,故 存在。

为便于计算, 将区间上分划成等分 , 即取分点为

这样,小区间的长度为 ,再取 

积分和式为

将表达式写成一个紧凑的形式:

从而

此例告诉我们这样的信息:

1、用定积分定义来计算定积分的确不方便,有必要寻找简捷而有效的计算方法;

2、,也反映了定积分几何意义的正确性。






§5.2  定积分的性质、中值定理

规定:

1、时,

2、时,

这两条规定的意义较直观。

时,曲边梯形退缩成一段线, 故其面积应该为零;

时,区间所对应的分点成为

相应的小区间的长度 

此时,相对于的符号应相反。

声明:在下面的讨论中, 对积分上下限的大小均不加以限制,并假定各性质中所列出的定积分均存在。

【性质一】函数的和(差)的定积分等于它们的定积分的和(差)。

即:   

证明:

显然,性质一对于任意有限个函数也是成立的。

【性质二】被积函数的常数因子可以提到积分号外面。

即:       ( 是常数因子 )

证明:

性质三】如果将积分区间分成两部分, 则在整个区间上定积分等于这两个区间上定积分之和。

 即:   ( * )

这一性质的几何意义十分明显。如图,曲边梯形的面积有:

此性质表明,定积分对于积分区间具有可加性。其实,无论三个数的相对位置如何,等式( * )总是成立的。

例如:当时, 有

性质四】如果在区间上,,则

性质五】如果在区间上,,则 

据定积分几何意义,它是一个曲边梯形真正的面积值,故它应为非负的。

【推论一】如果在区间上,,则

事实上, 由 , 据 性质五 与 性质一 有

【推论二】

证明

由推论一有: 

即:   

性质六】设分别是函数在区间上的最大值及最小值,

则     

证明:

则  

这一性质可用来估计定积分值的范围,它也具有鲜明的几何意义。

性质七】( 定积分的中值定理 )

如果函数在闭区间上连续, 则在上至少存在一点

使得   

证明:据性质六有

数值 介于连续函数上的最小值与最大值之间, 再由闭区间上连续函数的介值定理, 在  上至少存在一点 ,使得

积分中值公式的几何解释

利用计算机编写程序gs0502.m对定积分

进行数值计算试验,我们可验证定积分中值定理的正确性。运行该程序时,注意建立被积函数的函数文件f.m






§5.3  微积分基本公式

一、积分上限的函数及其导数

设函数在区间上连续,并设上的一点,考察在部分区间上的积分

这一特殊形式的积分有两点应该注意:

其一、因连续,该定积分存在。此时,变量“ 身兼两职 ”,既是积分变量,又是积分的上限。

为了明确起见,将积分变量改用其它符号如来表示,这是因为定积分与积分变量的选取无关。上面的定积分改写成下述形式

其二、若上限上任意变动,则对应于每一个取定,该定积分有一个对应值。所以,它在上定义了一个新的函数, 记作

为以积分上限为变量的函数( 简称变上限函数 )。

是否确有这类函数?

观察一个例子,正态曲线上的变上限函数为

它表示一个曲边梯形的面积。运行程序gs0503.m,可分别作出上的图象

这表明,确实是一个新的函数。

【定理一】如果函数在区间上连续, 则变上限函数

上具有导数,且它的导数是

证明:当上限获得增量时, 处的函数值为

由此得函数的增量

据积分中值定理:

  之间

即: 

定理一表明:的一个原函数。因此,我们便有下面原函数的存在性定理。

【定理二】如果函数在区间上连续, 则函数

就是上的一个原函数。

定理二的重要意义在于:

其一、肯定了连续函数的原函数的存在性。

其二、揭示了定积分与原函数之间的联系。 使得定积分的计算有可能通过原函数来实现。

二、牛顿-莱布尼兹公式

【定理三】上连续, 上的任一原函数

则    

证明:均是上的原函数

则       (  为常数,   )

令  ,  

而 

故 

从而 

即 

若令, 得: 

为了方便,今后记 或 

最后,我们提醒一句,微积分基本公式时,一定要注意条件:

在区间上的原函数。

【例1】计算  与  

解:  

注:当初阿基米德用穷竭法计算定积分,可是费了不少功夫,可如今变得简单多了,这得益于微积分基本公式。

【例2】设内连续,且,证明函数

内为单调增加函数。

证明:

   

由假设, 在 上 , , 故

 ,      ,

从而, 在 上是单增的。

 

【例3】求极限  

解:这是一个型的不定式,可用罗必达法则来计算,分子可写成

它是以为上限的函数, 作为的函数, 它可视作以为中间变量的复合函数, 故

 

注明:试图用牛顿 -- 莱布尼兹公式计算定积分的思路是不可取的。这是因为不具有有限形式的原函数。

公元前的古希腊数学家阿基米德最先具有定积分的初步思想方法,而明确提出定积分概念却是由牛顿(英1642 - 1727)与莱布尼兹(德1646-1716)共同完成的。 而当时的定积分理论基础尚不严谨, 甚至连个严格的定义都没有。直到(1826 - 1866)德国数学家黎曼给出了今天的定积分严格定义。

这一事实表明:一个科学概念从萌芽、诞生到成熟需要经历很长时间。 因此,列宁称“ 自然科学的生命是概念 ”再恰当不过了。

定积分的符号 是由莱布尼兹首先引用的。其含义是:定积分的实质是求积分和式的极限,英文中求和一词是Sum,将S拉长变成了。显然,符号从外形到含义均表达了“求和”的涵义,堪称“形意兼备”。莱布尼兹在微积分中引用的符号系统:

彼此之间有联系,又各自表达不同的意义,可以说十分先进。现代计算机数学软件所采用的符号系统便是莱布尼兹所定义的,由这一点可看出先进的符号体系是重要的。

我国古代数学尽管历史悠久,但发展缓慢,其中一个重要的原因是符号落后。象著名的“勾股定理”也仅被表述成:勾三股四弦五,即:

在计算机编程中,合理有效地使用符号与变量的名称更是一个不容忽视的大问题。




from: http://sxyd.sdut.edu.cn/gaoshu1/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 积分中值定理指出,在一个定义域内的某一函数的积分,可以通过在这个定义域某一点上取函数值与定义域长度的乘积来近似计算,而微分中值定理则认为,在某一点上,函数的导数可以近似由函数在该点左右两点上取值的差值除以它们之间的距离所得。 ### 回答2: 积分中值定理和微分中值定理微积分两个重要的定理。 积分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上连续且可积,那么存在一个$\xi$在区间$(a, b)$内,使得$\int_a^b f(x)dx = f(\xi)(b-a)$。简单说,积分中值定理表明在一个连续函数定积分,一定存在某个点,使得该点的函数值与其定义域上的平均值相等。 微分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上可导且连续,那么存在一个$\xi$在开区间$(a, b)$内,使得$f'(\xi) = \frac{f(b)-f(a)}{b-a}$。简单说,微分中值定理表明在一个可导函数的导数,一定存在某个点满足导数等于该函数在闭区间上的斜率。 两个定理的区别主要在于对象和定理的表达方式上。积分中值定理是关于函数在闭区间上定积分的取值与函数在内部某个点上的函数值之间的关系。而微分中值定理则是关于函数在闭区间上的导函数函数在内部某个点上的斜率之间的关系。 ### 回答3: 积分中值定理和微分中值定理都属于微积分的重要定理,但它们的应用对象不同,所表示的意义也有所差异。 积分中值定理是用来描述定积分性质的定理,它指出如果一个函数在闭区间[a,b]上连续,并且满足一定的条件,那么在[a,b]上必然存在一点c,使得函数在c处的取值等于整个区间上函数的平均值。具体来说,对于函数f(x)在闭区间[a,b]上,存在一点c,使得∫[a,b]f(x)dx = (b-a)f(c)。 微分中值定理是用来描述导数的性质的定理,它指出如果一个函数在闭区间[a,b]上是可导的,并且满足一定的条件,那么在(a,b)内必然存在一点c,使得函数在c处的导数等于函数在该区间上两个端点的函数值的差与对应的导数的乘积的比值。具体来说,对于函数f(x)在闭区间[a,b]上可导,存在一点c,使得f'(c) = (f(b)-f(a))/(b-a)。 综上所述,积分中值定理和微分中值定理的不同主要体现在它们的应用对象和所代表的意义上。积分中值定理描述了整个区间上函数的平均值与函数在某一点处的关系,而微分中值定理描述了函数在某一区间上的导数与函数在该区间内两个端点处函数值的关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值