§4 抛物线
1. 抛物线基本参数 如图所示: 轴:AB 顶点:A 焦点:F 焦点参数:p(过焦点且垂直于轴的弦长之半,即图中CD之长的一半) 焦点半径: r(抛物线上一点到焦点的距离,如图中MF之长) 直径:直线EMH(平行于抛物线的直线) 准线:直线L(与轴垂直,到顶点A的距离为p/2,到焦点F的距离为P) | ![]() |
2. 抛物线的性质
如上图,MF=ME,或写为r=ME. 即抛物线是到一定点(焦点)的距离与到一定直线(准线)的距离相等的动点M的轨迹。
3. 抛物线方程
图形 | 方程 | 顶点,焦点,准线 |
| 1 标准方程 2 极坐标方程 (极点位于焦点F,极轴与抛物线轴重合,背向顶点) | 顶点:A(0,0) |
|
| 顶点:A(0,0) |
|
| 顶点:A(0,0) |
|
| 顶点:A(0,0) |
| | 顶点:A(g,h) |
| | 顶点:A(g,h) |
| | 顶点: (当a>0时,开口 向上, (当a<0时,开口 向下) 焦点参数: 与x轴的交点A1,A2: |
| 1. (a>0) 2. 参数方程 | 顶 点: 焦点参数: |
4. 抛物线的切线
(1) 的切线(MT)方程为: 若切线的斜率为k,则切线方程为: 切线MT把M点焦点半径与直径的夹角 并且一切与MT平行的弦被过M点的直径平分 | ![]() |
(2)
抛物线任两切线的夹角等于两切线的焦点半径夹角的一半,
(3)从焦点F作抛物线在点M的切线的垂线,则垂足的轨迹为顶点的切线。
§5 一般二次曲线
1.一般二次曲线的方程
x,y的二次方程
所表示的曲线称为一般二次曲线
2.二次曲线的一般性质
(1)直线与二次曲线的交点
一直线与一个二次曲线交于两点(实的,虚的,重合的)
(2)二次曲线的直径与中心
一个二次曲线的平行于已知方向的弦的中点在一直线上,称它为二次曲线的直径,他平分某一组弦,设已知方向的方向数为α,β, 则直径的方程为
或改写为
由此可见,二次曲线的直径组成一个直线束,束内任一直径通过下列两直线交点:
这时二次曲线的一切直径通过同一个点,称为中心,这种曲线称为有心二次曲线,
中心的坐标为
<1>
这时曲线无中心;
<2>
这时曲线有无限个中心,即中心在同一直线上(中心直线),这两种曲线称为无心二次曲线。
(3) 二次曲线的主轴(或对称轴)
如果直径垂直于被它所平分的弦,则称它为二次曲线的主轴(或对称轴),无心二次曲线有一条实的主轴;有心二次曲线有两条实的主轴,他们是互相垂直的,焦点就是中心。
3. 二次曲线上的切线与法线
二次曲线上的一点M(xo,yo)的切线方程为
在点M与二次曲线的切线垂直的直线称为在点M的法线,它的方程为
4.二次曲线的不变量
由一般二次曲线的方程
(1)
的系数所组成的下列三个函数:
行列式D称为二次方程(1)的判别式。
5.二次曲线的标准方程与形状
不 变 量 | 坐标变换下的标准方程 | 曲线形状 | ||
有 心 二 次 曲 线 |
| | 式中 A,C是特征方程 | DS<0时为椭圆 DS>0时为虚椭圆 |
| 有一公共实点的 一对虚直线 | |||
| | 双曲线 | ||
| 相交两直线 | |||
无 心 二 次 曲 线 | | 式中 | 抛物线 | |
| | 时为平行两直线, 时为重合两直线, 时为一对虚直线 |
6.
a | 图 形 | 顶点·中心·焦点参数 |
抛物线 | | |
椭圆 | | 顶点 : |
双曲线 | |
7.圆锥截线
二次曲线都是用平面切割正圆锥面的截线,因此二次曲面也称为圆锥截线.
用一平面p切割正圆锥时,若p不通过锥顶,且不平行与任一母线,则截线为椭圆;
若p不通过锥顶,而平行与一条母线时,截线为抛物线;若p不通过锥顶,而平行与两条母线时,截线为双曲线;若p垂直于锥轴,截线为圆。
若p通过锥顶,则椭圆变为一点,双曲线变为一对相交直线,抛物线变为p与圆锥相切的一直线。
from: http://202.113.29.3/nankaisource/mathhands/