§1 圆
1. 圆的方程
图形 | 方程 | 圆心 | 半径 |
| 1º 标准方程: x²+y²=R² 2º 参数方程: 3º 极坐标方程: ρ=R | G( 0, 0)
| r=R
|
| 1º (x-a)² +(y-b)² =R² 2º 参数方程:
| G(a, b) | r=R
|
| 1º x²+y²+2mx+2ny+q=0 (m²+n²>q)
| G(-m,-n) | |
| 1º x²+y²=2Rx 2º 极坐标方程: ρ=2Rcosφ
| G(R,0) | r=R
|
| 1º x²+y²=2Ry 2º 极坐标方程: ρ=2Rsinφ
| G(0,R) | r=R
|
| 极坐标方程: ρ² -2ρρ0cos(φ-φ0)+ρ02=R2 | G(ρ0,φ0)
| r=R
|
| 过M1(x1, y1, z1) , M2(x2,y2, z2) , M3(x3, y3, z3) 三点的圆方程: |
|
|
2. 圆的切线方程
1º 圆 x²+y²=R² 上一点M(x0 , y0) 的切线方程为
x0x+y0y=R2
2º 圆 x²+y²+2mx+2ny+q=0 上一点M(x0 , y0) 的切线方程为
x0x+y0y+m(x+x0)+n(y+y0)+q=0
3. 二圆的交角及正交条件
圆C1: x²+y²+2m1x+2n1y+q1=0
圆C2: x²+y²+2m2x+2n2y+q2=0
两个圆C1,C2的交角θ是指它们在交点处两条切线的夹角
由上式可得,圆C1与C2正交的条件为:
2m1m2+2n1n2-q1-q2=0
§2 椭圆
1. 椭圆基本参数
如图所示,
-
轴(对称轴):长轴 AB=2a
-
短轴 CD=2b (a>b>0)
-
顶点:A,B,C,D
-
中心:G
-
焦点:F1,F2
-
焦距:F1F2=2c,
-
离心率:e=c/a<1
-
压缩系数:μ=b/a,μ2=1-e2
-
焦点参数:p=b2/a (过焦点且垂直于长轴的弦长之半,即图中F1H之长)
-
焦点半径:r1,r2 (椭圆上一点M(x,y)到两焦点的距离,即图中MF1,MF2之长)
-
直径: PQ (通过椭圆中心的弦)
-
共轭直径:直径斜率分别为k,k ',且满足kk '=-b2/a2
-
准线:直线l1和l2(平行于短轴,到短轴距离为a/e)
2.椭圆的性质
⑴半径之和为常数(等于长轴2a):r1+r2=2a。即椭圆是到两定点(即焦点)的距离之和为常数(长轴)的动点M的轨迹。
⑵如上图,MF1/ME1=MF2/ME2=e或写为r1/ME1=r2/ME2=e即椭圆也是到一定点(焦点之一)的距离与到一定直线(准线之一)的距离之比为小于1的常数(离心率e)的动点M 的轨迹。
⑶椭圆是将半径为a的圆沿y轴方向按比例μ=b/a (压缩系数)压缩而得到的,即若点M(x,y)在圆x2+y2=a2上,则点M '(x,y ')在椭圆
上,其中y '=μy。
⑷椭圆任一直径把平行于其共轭直径的弦平分,如果两共轭直径的长分别为2a1和2b1,它们与长轴的夹角(锐角)分别为α和β,则有
⑸椭圆上任一点M(x,y)的焦点半径之积(r1r2)等于它的对应半共轭直径(图中NO )的平方。
⑹设MM ',NN '为椭圆的两共轭直径(如上图),通过M,M '分别作直线平行于NN ';又通过N,N '分别作直线平行于MM ',则这四条直线构成的平行四边形面积为一常数4ab。
3.椭圆方程
图例 | 方程 | 顶点,中心,焦点,长半轴,短半轴 |
| ①标准方程 (a>b>0) ②参数方程 | 顶点: A,B(±a,0) C,D (0,±b) 中心:G(0,0) 焦点:F1,F2(±c,0) 长半轴:a 短半轴:b |
| ① (a>b>0) ②参数方程 | 顶点: A,B(g±a,h) C,D(g,h±b) 中心:G(g,h) 焦点: F1,F2(g±c,h) 长半轴:a 短半轴:b |
| (a>b>0) | 顶点: A,B (0,±a) C,D (±b,0) 中心:G(0,0) 焦点: F1,F2(0,±c) , 长半轴:a;短半轴:b |
| 极坐标方程: (e<1) 极点为一个焦点(F1),极轴为从焦点指向最近的一个顶点 | 长半轴: 短半轴: 焦距: |
4.椭圆的切线
设椭圆:
椭圆上任一点M(x0,y0)的切线MT方程为
若切线MT的斜率为k,则切线方程为
式中正负号表示直径MM ' 两端点(M和M ')的两切线。
切线MT把点M的两焦点半径(MF1,MF2)间的外角(∠F1MH)平分,即图中α=β,且
而点M的法线NM把内角(∠F1MF2)平分。
§3 双曲线
1. 双曲线的基本参数
顶点:A,B 中心:G 焦距: (过焦点且垂直于实轴的弦长之半,即图中F1H之长) (双曲线上一点M(x,y)到两焦点的距离,如图中MF1,MF2之长) 直径:PQ(通过双曲线中心的弦) 共轭直径:=直径斜率分别为k,k',且满足 准线:直线L1和L2 (垂直于实轴,到中心的距离为a/e) 渐近线: | ![]() |
2. 双曲线的性质
(1) 焦点半径之差为常数(等于实轴2a):
即双曲线是到两定点(即焦点)的距离之差为常数(实轴)的动点M的轨迹(使r1-r2=2a的点数于双曲线的一支,而使r2-r1=2a 的各点属于双曲线的另一支)
(2)如上图,
即双曲线也是到一定点(焦点之一)的距离于到一定直线(准线之一)的距离之比为大于1的常数(离心率e)的动点M的轨迹。
(3)双曲线的任一直径把平行于共轭直径的弦平分。如果两共轭直径的长分别为2a1,2b1,两直径与实轴夹角(锐角)分别为α和β(α<β),则
(4)双曲线上任一点M的焦点半径之积等于它的对应半共轭直径的平方。
(5)设MM¹,NN¹为双曲线的两共轭直径,通过M,M¹分别作直线平行与NN¹;又通过N, M¹分别作直线平行于MM¹,则这四条直线构成的平行四边形的面积为一常数4ab。
3. 双曲线方程
图形 | 方程 | 顶点,中心, 焦点,渐近线 |
| 1, 标准方程 2,参数方程 | 顶点 : 中心: G(0,0) 焦点: 渐近线: |
| (与 成共轭双曲线) | 中心:G(0,0) 焦点: |
| | 顶点: 中心:G(g,h) 焦点: 渐近线: |
| 极坐标方程: (极点位于一焦点上,极轴为从焦点背向顶点的射线,此方程得到双曲线的一支,另一支可由双曲线得到) | 实轴: 虚轴: 焦距: |
| | 顶点A,B: 中心:G(0,0) 焦 点 : 轴长: 渐近线:x=0,y=0 |
| | 顶点A,B: 中心: 轴长: 渐近线: |
4. 双曲线的切线
(1) 双曲线上一点M(x0,y0)的切线(MT) 方程为: 若切线MT的斜率为k,则切线方程为: 式中正负号表示在直径MM¹两端点 (M和M¹)的两切线。 切线MT把M点两焦点半径间的内角 (∠F1MF2)平分,即图中 而M点的法线把外角(∠F1MH)平分。 | ![]() |
(2) 两条渐近线
平分(TM=MT1),且△OTT1的面积(图中的阴影部分) 平行四边形OJMI 的面积(图中的阴影部分) | ![]() |
from: http://202.113.29.3/nankaisource/mathhands/