高等代数复习:多项式

本篇文章适合个人复习翻阅,不建议新手入门使用

一元多项式环

定义:一元多项式
设数域 K \mathbb{K} K,未定元 x x x,若 a 0 , a 1 , … , a n ∈ K ( a n ≠ 0 , n ≥ 0 ) a_0,a_1,\dots,a_n\in \mathbb{K}(a_n\neq 0,n\geq 0) a0,a1,,anK(an=0,n0),称形式表达式
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0 为数域 K \mathbb{K} K 上关于未定元 x x x 的一元 n n n 次多项式,记 f ( x ) f(x) f(x) 的次数为 deg ⁡ f ( x ) = n \deg f(x)=n degf(x)=n

命题:一元多项式空间
数域 K \mathbb{K} K 上的一元多项式全体记为 K [ x ] \mathbb{K}[x] K[x],关于多项式的加法和数乘成为一个线性空间

命题:次数的性质

  • deg ⁡ ( f ( x ) g ( x ) ) = deg ⁡ f ( x ) + deg ⁡ g ( x ) \deg (f(x)g(x))=\deg f(x)+\deg g(x) deg(f(x)g(x))=degf(x)+degg(x)
  • deg ⁡ ( f ( x ) + g ( x ) ) ≤ max ⁡ { deg ⁡ f ( x ) , deg ⁡ g ( x ) } \deg (f(x)+g(x))\leq \max\{\deg f(x),\deg g(x)\} deg(f(x)+g(x))max{degf(x),degg(x)}
  • deg ⁡ ( c f ( x ) ) = c deg ⁡ f ( x ) ( c ≠ 0 ) \deg (cf(x))=c\deg f(x)(c\neq 0) deg(cf(x))=cdegf(x)(c=0)

整除

定义:整除
f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in\mathbb{K}[x] f(x),g(x)K[x],若存在 h ( x ) ∈ K [ x ] h(x)\in\mathbb{K}[x] h(x)K[x],使得
f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x)则称 g ( x ) g(x) g(x) f ( x ) f(x) f(x) 的因式,或 g ( x ) g(x) g(x) 可以整除 f ( x ) f(x) f(x),或 f ( x ) f(x) f(x) 可以被 g ( x ) g(x) g(x) 整除,记为 g ( x ) ∣ f ( x ) g(x)|f(x) g(x)f(x)

性质
f ( x ) , g ( x ) , h ( x ) ∈ K [ x ] , 0 ≠ c ∈ K f(x),g(x),h(x)\in\mathbb{K}[x],0\neq c\in\mathbb{K} f(x),g(x),h(x)K[x],0=cK,则

  • f ( x ) ∣ 0 , 0 ∤ f ( x ) f(x)\mid 0,0\nmid f(x) f(x)00f(x)
  • 自反性: f ( x ) ∣ f ( x ) f(x)\mid f(x) f(x)f(x)
  • 传递性:若 f ( x ) ∣ g ( x ) , g ( x ) ∣ h ( x ) f(x)\mid g(x),g(x)\mid h(x) f(x)g(x),g(x)h(x),则 f ( x ) ∣ h ( x ) f(x)\mid h(x) f(x)h(x)
  • f ( x ) ∣ g ( x ) f(x)\mid g(x) f(x)g(x),则 c f ( x ) ∣ g ( x ) cf(x)\mid g(x) cf(x)g(x)
  • c ∣ f ( x ) c\mid f(x) cf(x)
  • f ( x ) ∣ g ( x ) , g ( x ) ∣ f ( x ) f(x)\mid g(x),g(x)\mid f(x) f(x)g(x),g(x)f(x),则存在 0 ≠ c ∈ K 0\neq c\in\mathbb{K} 0=cK 使得 f ( x ) = c g ( x ) f(x)=cg(x) f(x)=cg(x)

命题:带余除法
f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in\mathbb{K}[x] f(x),g(x)K[x] g ( x ) ≠ 0 g(x)\neq 0 g(x)=0,则存在唯一的 q ( x ) , r ( x ) ∈ K [ x ] q(x),r(x)\in\mathbb{K}[x] q(x),r(x)K[x] 使得
f ( x ) = g ( x ) q ( x ) + r ( x ) f(x)=g(x)q(x)+r(x) f(x)=g(x)q(x)+r(x) deg ⁡ r ( x ) < deg ⁡ g ( x ) \deg r(x)<\deg g(x) degr(x)<degg(x)

证明思路
存在性:
deg ⁡ f ( x ) < deg ⁡ g ( x ) \deg f(x)<\deg g(x) degf(x)<degg(x) 情形易证,下面考虑 deg ⁡ f ( x ) ≥ deg ⁡ g ( x ) \deg f(x)\geq \deg g(x) degf(x)degg(x)
deg ⁡ f ( x ) \deg f(x) degf(x) 作归纳,设结论对 deg ⁡ f ( x ) < n \deg f(x)<n degf(x)<n 均成立,设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 , a n ≠ 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,a_n\neq 0 f(x)=anxn+an1xn1++a1x+a0,an=0 g ( x ) = b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 , b m ≠ 0 g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0,b_m\neq 0 g(x)=bmxm+bm1xm1++b1x+b0,bm=0
f 1 ( x ) = f ( x ) − a n b m x n − m g ( x ) f_1(x)=f(x)-\frac{a_n}{b_m}x^{n-m}g(x) f1(x)=f(x)bmanxnmg(x) deg ⁡ f 1 ( x ) < n \deg f_1(x)<n degf1(x)<n,可做带余除法
f 1 ( x ) = g ( x ) q 1 ( x ) + r ( x ) f_1(x)=g(x)q_1(x)+r(x) f1(x)=g(x)q1(x)+r(x)其中 deg ⁡ r ( x ) < deg ⁡ g ( x ) \deg r(x)<\deg g(x) degr(x)<degg(x),则
f ( x ) − a n b m x n − m g ( x ) = g ( x ) q 1 ( x ) + r ( x ) f(x)-\frac{a_n}{b_m}x^{n-m}g(x)=g(x)q_1(x)+r(x) f(x)bmanxnmg(x)=g(x)q1(x)+r(x)
f ( x ) = ( a n b m x n − m + q 1 ( x ) ) g ( x ) + r ( x ) f(x)=(\frac{a_n}{b_m}x^{n-m}+q_1(x))g(x)+r(x) f(x)=(bmanxnm+q1(x))g(x)+r(x)即得

唯一性:
另设带余除法 f ( x ) = g ( x ) p ( x ) + t ( x ) f(x)=g(x)p(x)+t(x) f(x)=g(x)p(x)+t(x)则有 g ( x ) ( q ( x ) − p ( x ) ) = t ( x ) − r ( x ) g(x)(q(x)-p(x))=t(x)-r(x) g(x)(q(x)p(x))=t(x)r(x) q ( x ) − p ( x ) ≠ 0 q(x)-p(x)\neq 0 q(x)p(x)=0,则
deg ⁡ ( t ( x ) − r ( x ) ) = deg ⁡ g ( x ) ( q ( x ) − p ( x ) ) ≥ deg ⁡ g ( x ) > deg ⁡ ( t ( x ) − r ( x ) ) \deg(t(x)-r(x))=\deg g(x)(q(x)-p(x))\geq \deg g(x)>\deg (t(x)-r(x)) deg(t(x)r(x))=degg(x)(q(x)p(x))degg(x)>deg(t(x)r(x))得矛盾

最大公因式

定义:最大公因式和最小公倍式
若对 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 的任意公因式 d ( x ) d(x) d(x),都有 d ( x ) ∣ h ( x ) d(x)\mid h(x) d(x)h(x),则称 h ( x ) h(x) h(x) 为最大公因式,记为 g c d ( f ( x ) , g ( x ) ) gcd(f(x),g(x)) gcd(f(x),g(x)) ( f ( x ) , g ( x ) ) (f(x),g(x)) (f(x),g(x))
若对 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 的任意公倍式 d ( x ) d(x) d(x),都有 h ( x ) ∣ d ( x ) h(x)\mid d(x) h(x)d(x),则称 h ( x ) h(x) h(x) 为最小公倍式,记为 l c m ( f ( x ) , g ( x ) ) lcm(f(x),g(x)) lcm(f(x),g(x)) [ f ( x ) , g ( x ) ] [f(x),g(x)] [f(x),g(x)]
最大公因式和最小公倍式在首一的意义下(即首项系数为1)唯一

算法:Euclid辗转相除法
f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 的最大公因式 d ( x ) d(x) d(x),不妨设 deg ⁡ f ( x ) ≥ deg ⁡ g ( x ) \deg f(x)\geq \deg g(x) degf(x)degg(x),作带余除法
f ( x ) = g ( x ) q ( x ) + r ( x ) f(x)=g(x)q(x)+r(x) f(x)=g(x)q(x)+r(x) r ( x ) ≠ 0 r(x)\neq 0 r(x)=0,则继续做
g ( x ) = r ( x ) q 1 ( x ) + r 1 ( x ) g(x)=r(x)q_1(x)+r_1(x) g(x)=r(x)q1(x)+r1(x)重复操作直至 r ( x ) = 0 r(x)=0 r(x)=0

定理:最大公因式的结构
f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in\mathbb{K}[x] f(x),g(x)K[x],则存在 u ( x ) , v ( x ) ∈ K [ x ] u(x),v(x)\in\mathbb{K}[x] u(x),v(x)K[x] 使得
f ( x ) u ( x ) + g ( x ) v ( x ) = ( f ( x ) , g ( x ) ) f(x)u(x)+g(x)v(x)=(f(x),g(x)) f(x)u(x)+g(x)v(x)=(f(x),g(x))

证明
只需证存在 u , v u,v u,v 使得 u f + v g ∣ ( f , g ) uf+vg\mid (f,g) uf+vg(f,g),从而只需证 u f + v g ∣ f uf+vg\mid f uf+vgf
设集合 S = { u ( x ) f ( x ) + v ( x ) g ( x ) ∣ u , v ∈ K [ x ] } S=\{u(x)f(x)+v(x)g(x)|u,v\in \mathbb{K}[x]\} S={u(x)f(x)+v(x)g(x)u,vK[x]} d ( x ) d(x) d(x) 为集合 S S S 中次数最小的一个,且
d ( x ) = f ( x ) u 1 ( x ) + g ( x ) v 1 ( x ) d(x)=f(x)u_1(x)+g(x)v_1(x) d(x)=f(x)u1(x)+g(x)v1(x)下证 d ( x ) ∣ f ( x ) d(x)|f(x) d(x)f(x),反证法,设 f ( x ) = d ( x ) q ( x ) + r ( x ) , 0 < deg ⁡ r ( x ) < deg ⁡ d ( x ) f(x)=d(x)q(x)+r(x),0<\deg r(x)<\deg d(x) f(x)=d(x)q(x)+r(x),0<degr(x)<degd(x),则有
r ( x ) = f ( x ) − d ( x ) q ( x ) = f ( x ) − q ( x ) ( f ( x ) u 1 ( x ) + g ( x ) v 1 ( x ) ) = f ( x ) [ 1 − q ( x ) u 1 ( x ) ] + g ( x ) [ − v 1 ( x ) q ( x ) ] ∈ S \begin{split} r(x)&=f(x)-d(x)q(x)\\ &=f(x)-q(x)(f(x)u_1(x)+g(x)v_1(x))\\ &=f(x)[1-q(x)u_1(x)]+g(x)[-v_1(x)q(x)]\in S\\ \end{split} r(x)=f(x)d(x)q(x)=f(x)q(x)(f(x)u1(x)+g(x)v1(x))=f(x)[1q(x)u1(x)]+g(x)[v1(x)q(x)]S deg ⁡ r > deg ⁡ d \deg r>\deg d degr>degd,与假设矛盾,得证

推论
上述定理在 deg ⁡ u < deg ⁡ g ( f , g ) , deg ⁡ v < deg ⁡ f ( f , g ) \deg u<\deg \frac{g}{(f,g)},\deg v<\deg\frac{f}{(f,g)} degu<deg(f,g)g,degv<deg(f,g)f 的条件下可得 u , v u,v u,v 的唯一性

证明
f = f 1 ( f , g ) , g = g 1 ( f , g ) f=f_1(f,g),g=g_1(f,g) f=f1(f,g),g=g1(f,g),则 ( f 1 , g 1 ) = 1 (f_1,g_1)=1 (f1,g1)=1,故存在 u 1 , v 1 u_1,v_1 u1,v1,使得 u 1 f 1 + v 1 g 1 = 1 u_1f_1+v_1g_1=1 u1f1+v1g1=1
作带余除法 u 1 = p g 1 + u ( deg ⁡ u < deg ⁡ g 1 ) u_1=pg_1+u(\deg u<\deg g_1) u1=pg1+u(degu<degg1),则
u 1 f 1 + v 1 g 1 = ( p g 1 + u ) f 1 + v 1 g 1 = u f 1 + ( p f 1 + v 1 ) g 1 \begin{split} u_1f_1+v_1g_1&=(pg_1+u)f_1+v_1g_1\\ &=uf_1+(pf_1+v_1)g_1\\ \end{split} u1f1+v1g1=(pg1+u)f1+v1g1=uf1+(pf1+v1)g1 v = p f 1 + v 1 v=pf_1+v_1 v=pf1+v1,由 u f 1 + v g 1 = 1 uf_1+vg_1=1 uf1+vg1=1,得 deg ⁡ u + deg ⁡ f 1 = deg ⁡ v + deg ⁡ g 1 \deg u+\deg f_1=\deg v+\deg g_1 degu+degf1=degv+degg1,从而 deg ⁡ v < deg ⁡ f 1 \deg v<\deg f_1 degv<degf1

定义:互素
f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in\mathbb{K}[x] f(x),g(x)K[x],若 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1,则称 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 互素

命题
f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in\mathbb{K}[x] f(x),g(x)K[x],则 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 互素当且仅当存在 u ( x ) , v ( x ) ∈ K [ x ] u(x),v(x)\in\mathbb{K}[x] u(x),v(x)K[x] 使得
f ( x ) u ( x ) + g ( x ) v ( x ) = 1 f(x)u(x)+g(x)v(x)=1 f(x)u(x)+g(x)v(x)=1

推论

  1. f 1 ( x ) ∣ g ( x ) , f 2 ∣ g ( x ) f_1(x)\mid g(x),f_2\mid g(x) f1(x)g(x),f2g(x) ( f 1 ( x ) , f 2 ( x ) ) = 1 (f_1(x),f_2(x))=1 (f1(x),f2(x))=1,则 f 1 ( x ) f 2 ( x ) ∣ g ( x ) f_1(x)f_2(x)\mid g(x) f1(x)f2(x)g(x)
  2. ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1 f ( x ) ∣ g ( x ) h ( x ) f(x)\mid g(x)h(x) f(x)g(x)h(x),则 f ( x ) ∣ h ( x ) f(x)\mid h(x) f(x)h(x)
  3. ( f ( x ) , g ( x ) ) = d ( x ) , f ( x ) = f 1 ( x ) d ( x ) , g ( x ) = g 1 ( x ) d ( x ) (f(x),g(x))=d(x),f(x)=f_1(x)d(x),g(x)=g_1(x)d(x) (f(x),g(x))=d(x),f(x)=f1(x)d(x),g(x)=g1(x)d(x),则 ( f 1 ( x ) , g 1 ( x ) ) = 1 (f_1(x),g_1(x))=1 (f1(x),g1(x))=1
  4. ( f ( x ) , g ( x ) ) = d ( x ) (f(x),g(x))=d(x) (f(x),g(x))=d(x),则 ( t ( x ) f ( x ) , t ( x ) g ( x ) ) = t ( x ) d ( x ) (t(x)f(x),t(x)g(x))=t(x)d(x) (t(x)f(x),t(x)g(x))=t(x)d(x)
  5. ( f 1 ( x ) , g ( x ) ) = 1 , ( f 2 ( x ) , g ( x ) ) = 1 (f_1(x),g(x))=1,(f_2(x),g(x))=1 (f1(x),g(x))=1,(f2(x),g(x))=1,则 ( f 1 ( x ) f 2 ( x ) , g ( x ) ) = 1 (f_1(x)f_2(x),g(x))=1 (f1(x)f2(x),g(x))=1
  6. f ( x ) g ( x ) ∼ ( f ( x ) , g ( x ) ) [ f ( x ) , g ( x ) ] f(x)g(x)\sim (f(x),g(x))[f(x),g(x)] f(x)g(x)(f(x),g(x))[f(x),g(x)]

定理:中国剩余定理
g 1 ( x ) , g 2 ( x ) , … , g n ( x ) g_1(x),g_2(x),\dots,g_n(x) g1(x),g2(x),,gn(x) 是两两互素的多项式, r 1 ( x ) , … , r n ( x ) r_1(x),\dots,r_n(x) r1(x),,rn(x) n n n 个多项式,则存在多项式 f ( x ) , q 1 ( x ) , … , q n ( x ) f(x),q_1(x),\dots,q_n(x) f(x),q1(x),,qn(x) 使得
f ( x ) = g i ( x ) q i ( x ) + r i ( x ) f(x)=g_i(x)q_i(x)+r_i(x) f(x)=gi(x)qi(x)+ri(x)

证明思路
只需证明存在多项式 f i ( x ) f_i(x) fi(x),使得对任意 i i i,有
f i ( x ) = g i ( x ) p i ( x ) + 1 , g i ( x ) ∣ f i ( x ) ( j ≠ i ) f_i(x)=g_i(x)p_i(x)+1,g_i(x)\mid f_i(x)(j\neq i) fi(x)=gi(x)pi(x)+1,gi(x)fi(x)(j=i) f ( x ) = r 1 ( x ) f 1 ( x ) + ⋯ + r n ( x ) f n ( x ) f(x)=r_1(x)f_1(x)+\cdots+r_n(x)f_n(x) f(x)=r1(x)f1(x)++rn(x)fn(x) 即可
存在 u j ( x ) , v j ( x ) u_j(x),v_j(x) uj(x),vj(x) 使得 g 1 ( x ) u j ( x ) + g j ( x ) v j ( x ) = 1 g_1(x)u_j(x)+g_j(x)v_j(x)=1 g1(x)uj(x)+gj(x)vj(x)=1,构造 f 1 ( x ) f_1(x) f1(x)如下
f 1 ( x ) = g 2 ( x ) v 2 ( x ) ⋯ g n ( x ) v n ( x ) = ( 1 − g 1 ( x ) u 2 ( x ) ) ⋯ ( 1 − g 1 ( x ) u n ( x ) ) f_1(x)=g_2(x)v_2(x)\cdots g_n(x)v_n(x)=(1-g_1(x)u_2(x))\cdots (1-g_1(x)u_n(x)) f1(x)=g2(x)v2(x)gn(x)vn(x)=(1g1(x)u2(x))(1g1(x)un(x))

因式分解

定义:不可约多项式
f ( x ) f(x) f(x) 是数域 K \mathbb{K} K 上的非常值多项式,若 f ( x ) f(x) f(x) 可分解为两个次数小于 deg ⁡ f ( x ) \deg f(x) degf(x) K \mathbb{K} K 上多项式之积,则称 f ( x ) f(x) f(x) K \mathbb{K} K 上的可约多项式,否则称 f ( x ) f(x) f(x) K \mathbb{K} K 上的可约多项式,否则称为不可约多项式

性质

  • f ( x ) f(x) f(x) 是数域 K \mathbb{K} K 上的不可约多项式,则对 K \mathbb{K} K 上任一多项式 g ( x ) g(x) g(x),要么有 f ( x ) ∣ g ( x ) f(x)\mid g(x) f(x)g(x),要么有 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1
  • p ( x ) p(x) p(x) 是数域 K \mathbb{K} K 上的不可约多项式, f ( x ) , g ( x ) f(x),g(x) f(x),g(x) K \mathbb{K} K 上的多项式且 p ( x ) ∣ f ( x ) g ( x ) p(x)\mid f(x)g(x) p(x)f(x)g(x),则要么 p ( x ) ∣ f ( x ) p(x)\mid f(x) p(x)f(x),要么 p ( x ) ∣ g ( x ) p(x)\mid g(x) p(x)g(x)
  • p ( x ) p(x) p(x) 是数域 K \mathbb{K} K 上的不可约多项式且 p ( x ) ∣ f 1 ( x ) f 2 ( x ) ⋯ f m ( x ) p(x)\mid f_1(x)f_2(x)\cdots f_m(x) p(x)f1(x)f2(x)fm(x) p ( x ) p(x) p(x) 必可整除其中某个 f i ( x ) f_i(x) fi(x)

定理:因式分解定理
f ( x ) f(x) f(x) 是数域 K \mathbb{K} K 上的非常值多项式,则

  1. f ( x ) f(x) f(x) 可分解为有限个 K \mathbb{K} K 上的不可约多项式之积
  2. f ( x ) = p 1 ( x ) p 2 ( x ) ⋯ p s ( x ) = q 1 ( x ) q 2 ( x ) ⋯ q t ( x ) f(x)=p_1(x)p_2(x)\cdots p_s(x)=q_1(x)q_2(x)\cdots q_t(x) f(x)=p1(x)p2(x)ps(x)=q1(x)q2(x)qt(x) f ( x ) f(x) f(x) 的两个不可约分解,即 p i ( x ) , q j ( x ) p_i(x),q_j(x) pi(x),qj(x) 都是 K \mathbb{K} K 上次数大于零的不可约多项式,则 s = t s=t s=t,且经过调换次序后,有 q i ( x ) ∼ p i ( x ) q_i(x)\sim p_i(x) qi(x)pi(x)

注:该定理表明,任一多项式可唯一地(在相伴意义下)分解为若干不可约多项式之积

证明
用归纳法易证

推论:
多项式的标准分解式: f ( x ) = c p 1 ( x ) e 1 p 2 ( x ) e 2 ⋯ p m ( x ) e m f(x)=cp_1(x)^{e_1}p_2(x)^{e_2}\cdots p_m(x)^{e_m} f(x)=cp1(x)e1p2(x)e2pm(x)em 其中 c ≠ 0 c\neq 0 c=0 p i ( x ) p_i(x) pi(x) 是互异的首一不可约多项式

定义:多项式的导数
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0,则形式地定义 f ( x ) f(x) f(x) 的导数为
f ′ ( x ) = n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + ⋯ + a 1 f'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\cdots+a_1 f(x)=nanxn1+(n1)an1xn2++a1

命题
数域 K \mathbb{K} K 上的多项式 f ( x ) f(x) f(x) 没有重因式的充分必要条件是 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x) 互素

命题
d ( x ) = ( f ( x ) , f ′ ( x ) ) d(x)=(f(x),f'(x)) d(x)=(f(x),f(x)),则 f ( x ) / d ( x ) f(x)/d(x) f(x)/d(x) 是一个没有重因式的多项式,且这个多项式的不可约因式与 f ( x ) f(x) f(x) 的不可约因式相同(不计重数)

多项式的根

定义:根
f ( b ) = 0 f(b)=0 f(b)=0,则称 b b b f ( x ) f(x) f(x) 的一个根或零点

定理:余数定理
f ( x ) ∈ K [ x ] , b ∈ K f(x)\in\mathbb{K}[x],b\in\mathbb{K} f(x)K[x],bK,则存在 g ( x ) ∈ K [ x ] g(x)\in\mathbb{K}[x] g(x)K[x],使得
f ( x ) = ( x − b ) g ( x ) + f ( b ) f(x)=(x-b)g(x)+f(b) f(x)=(xb)g(x)+f(b)特别地, b b b f ( x ) f(x) f(x) 的根当且仅当 ( x − b ) ∣ f ( x ) (x-b)\mid f(x) (xb)f(x)

定义:重根
下列等价

  1. ( x − b ) k ∣ f ( x ) , ( x − b ) k + 1 ∤ f ( x ) (x-b)^k\mid f(x),(x-b)^{k+1}\nmid f(x) (xb)kf(x),(xb)k+1f(x)
  2. ( x − b ) k − 1 ∣ ( f ( x ) , f ′ ( x ) ) , ( x − b ) k ∤ ( f ( x ) , f ′ ( x ) ) (x-b)^{k-1}\mid (f(x),f'(x)),(x-b)^k\nmid (f(x),f'(x)) (xb)k1(f(x),f(x)),(xb)k(f(x),f(x))
  3. f ( k − 1 ) ( b ) = 0 , f ( k ) ( b ) ≠ 0 f^{(k-1)}(b)=0,f^{(k)}(b)\neq 0 f(k1)(b)=0,f(k)(b)=0

则称 b b b f ( x ) f(x) f(x) 的一个 k k k 重根

命题:无重根的刻画
f ( x ) f(x) f(x) 无重根当且仅当 ( f ( x ) , f ′ ( x ) ) = 1 (f(x),f'(x))=1 (f(x),f(x))=1

命题:多项式相等的判定

  1. f ( x ) f(x) f(x) 是数域 K \mathbb{K} K 上的不可约多项式且 deg ⁡ f ( x ) ≥ 2 \deg f(x)\geq 2 degf(x)2,则 f ( x ) f(x) f(x) K \mathbb{K} K 中没有根
  2. f ( x ) f(x) f(x) 是数域 K \mathbb{K} K 上的 n n n 次多项式,则 f ( x ) f(x) f(x) K \mathbb{K} K 中最多只有 n n n 个根
  3. f ( x ) f(x) f(x) g ( x ) g(x) g(x) K \mathbb{K} K 上的次数不超过 n n n 的两个多项式,若存在 K \mathbb{K} K n + 1 n+1 n+1 个不同的数 b 1 , b 2 , … , b n + 1 b_1,b_2,\dots,b_{n+1} b1,b2,,bn+1使得
    f ( b i ) = g ( b i ) , i = 1 , 2 , … , n + 1 f(b_i)=g(b_i),i=1,2,\dots,n+1 f(bi)=g(bi),i=1,2,,n+1 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x)

复系数多项式

定理:代数基本定理
次数大于零的复数域上的一元多项式至少有一个复数根

推论

  • 复数域上的一元 n n n 次多项式恰有 n n n 个复根(包括重根)
  • 复数域上的不可约多项式都是一次多项式
  • 复数域上的一元 n n n 次多项式必可分解为一次因式之积

命题:标准分解式
f ( x ) f(x) f(x) C \mathbb{C} C 上的标准分解式定义为
f ( x ) = a ( x − c 1 ) r 1 ( x − c 2 ) r 2 ⋯ ( x − c s ) r s f(x)=a(x-c_1)^{r_1}(x-c_2)^{r_2}\cdots(x-c_s)^{r_s} f(x)=a(xc1)r1(xc2)r2(xcs)rs其中 c i ∈ R c_i\in\mathbb{R} ciR 互异

定理:Vieta定理
若数域 K \mathbb{K} K 上的一元 n n n 次多项式 f ( x ) = a 0 x n + a 1 x n − 1 + a 2 x n − 2 + ⋯ + a n f(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_n f(x)=a0xn+a1xn1+a2xn2++an K \mathbb{K} K 中有 n n n 个根 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn,则
∑ i = 1 n x i = − a 1 a 0 \sum\limits_{i=1}^nx_i=-\frac{a_1}{a_0} i=1nxi=a0a1 ∑ 1 ≤ i < j ≤ n n x i x j = a 2 a 0 \sum\limits_{1\leq i<j\leq n}^nx_ix_j=\frac{a_2}{a_0} 1i<jnnxixj=a0a2 ∑ 1 ≤ i < j < k ≤ n n x i x j x k = − a 3 a 0 \sum\limits_{1\leq i<j<k\leq n}^nx_ix_jx_k=-\frac{a_3}{a_0} 1i<j<knnxixjxk=a0a3 ⋯ \cdots x 1 x 2 ⋯ x n = ( − 1 ) n a n a 0 x_1x_2\cdots x_n=(-1)^n\frac{a_n}{a_0} x1x2xn=(1)na0an

实系数多项式和有理系数多项式

命题
设实系数多项式
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0若复数 a + b i ( b ≠ 0 ) a+bi(b\neq 0) a+bi(b=0) 是其根,则 a − b i a-bi abi 也是它的根

推论

  • 实数域上的不可约多项式为一次多项式或下列二次多项式
    a x 2 + b x + c , b 2 − 4 a c < 0 ax^2+bx+c,b^2-4ac<0 ax2+bx+c,b24ac<0
  • 实数域上的多项式必分解为有限个一次因式和不可约二次因式的乘积

命题:标准分解式
f ( x ) f(x) f(x) R \mathbb{R} R 上的标准分解式定义为
f ( x ) = a ( x − a 1 ) r 1 ⋯ ( x − a s ) r s ( x 2 + p 1 x + q 1 ) k 1 ⋯ ( x 2 + p s x + q s ) k s f(x)=a(x-a_1)^{r_1}\cdots(x-a_s)^{r_s}(x^2+p_1x+q_1)^{k_1}\cdots(x^2+p_sx+q_s)^{k_s} f(x)=a(xa1)r1(xas)rs(x2+p1x+q1)k1(x2+psx+qs)ks其中 a i ∈ R a_i\in\mathbb{R} aiR 互异 p j 2 − 4 q j > 0 p_j^2-4q_j>0 pj24qj>0

命题
对任意有理系数多项式,都存在整系数多项式与其相伴

命题
n n n 次整系数多项式
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0则有理数 q p \frac{q}{p} pq f ( x ) f(x) f(x) 的根的必要条件是 p ∣ a n , q ∣ a 0 p\mid a_n,q\mid a_0 pan,qa0,其中 p , q p,q p,q 是互素的整数

定义:本原多项式
设多项式
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0是整系数多项式,若其系数的最大公约数为1,则称 f ( x ) f(x) f(x) 为本原多项式

Guass引理
两个本原多项式之积仍为本原多项式

证明
反证法

命题
若整系数多项式在有理数域上可约,则它必可分解为两个次数较低的整系数多项式之积

Eisenstein判别法
设多项式
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0是整系数多项式, a n ≠ 0 , n ≥ 1 a_n\neq 0,n\geq 1 an=0,n1 p p p 是一个素数,若 p ∣ a i ( i = 0 , 1 , … , n − 1 ) p\mid a_i(i=0,1,\dots,n-1) pai(i=0,1,,n1),但 p ∤ a n p\nmid a_n pan p 2 ∤ a 0 p^2\nmid a_0 p2a0,则 f ( x ) f(x) f(x) 在有理数域上不可约

参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值