-
对立、互斥、独立
-
分布函数的性质:
(1)F(-INF)=0,F(INF)=1
(2)F(x)单调递增
(3)右连续
(4)P{x1 < X <= x2} = F(x2) - F(x1) -
概率密度的充要条件:
(1)f(x) >= 0
(2)∫(-INF, INF)f(t)dt = 1
概率密度的性质:
F`(x) = f(x) -
常用期望和方差
(1)0-1分布:E(x)=p, D(x)=p(1-p)
(2)二项分布:E(x)=np, D(x)=np(1-p)
(3)泊松分布:E(x)=λ, D(x)=λ
(4)几何分布:E(x)=1/p, D(x)=(1-p)/p^2
(5)均匀分布:E(x)=(a+b)/2, D(x)=(b-a)^2/12
(6)指数分布:E(x)=λ, D(x)=1/λ^2
(7)正态分布:E(x)=μ, D(x)=σ^2 -
矩:原点矩、中心矩
-
协方差:Cov(X, Y) = E{[X - E(X)][Y - E(Y)]}
-
相关系数:ρXY = Cov(X, Y) / √(D(X))√(D(Y))
-
独立一定不相关;不相关不一定独立。
-
切比雪夫大数定律:依概率收敛于期望
-
点估计:根据统计量来估计未知参数
无偏估计:期望值 = 未知参数 -
矩估计法:用样本矩估计总体矩
最大似然估计:似然函数L(θ),求出使得L(θ)最大的未知量。 -
假设检验:
第一类错误:弃真,α称为显著水平
第二类错误:纳伪
显著性检验:根据显著水平α求出拒绝域W,判断观测值t是否在拒绝域W内,在则拒绝H0假设。
概率论
最新推荐文章于 2024-09-20 21:48:23 发布