消除类游戏

试题编号: 201512-2
试题名称: 消除类游戏
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  消除类游戏是深受大众欢迎的一种游戏,游戏在一个包含有n行m列的游戏棋盘上进行,棋盘的每一行每一列的方格上放着一个有颜色的棋子,当一行或一列上有连续三个或更多的相同颜色的棋子时,这些棋子都被消除。当有多处可以被消除时,这些地方的棋子将同时被消除。
  现在给你一个n行m列的棋盘,棋盘中的每一个方格上有一个棋子,请给出经过一次消除后的棋盘。
  请注意:一个棋子可能在某一行和某一列同时被消除。

输入格式
  输入的第一行包含两个整数n, m,用空格分隔,分别表示棋盘的行数和列数。
  接下来n行,每行m个整数,用空格分隔,分别表示每一个方格中的棋子的颜色。颜色使用1至9编号。

输出格式
  输出n行,每行m个整数,相邻的整数之间使用一个空格分隔,表示经过一次消除后的棋盘。如果一个方格中的棋子被消除,则对应的方格输出0,否则输出棋子的颜色编号。

样例输入
4 5
2 2 3 1 2
3 4 5 1 4
2 3 2 1 3
2 2 2 4 4
样例输出
2 2 3 0 2
3 4 5 0 4
2 3 2 0 3
0 0 0 4 4
样例说明
  棋盘中第4列的1和第4行的2可以被消除,其他的方格中的棋子均保留。
样例输入
4 5
2 2 3 1 2
3 1 1 1 1
2 3 2 1 3
2 2 3 3 3
样例输出
2 2 3 0 2
3 0 0 0 0
2 3 2 0 3
2 2 0 0 0
样例说明
  棋盘中所有的1以及最后一行的3可以被同时消除,其他的方格中的棋子均保留。
评测用例规模与约定
  所有的评测用例满足:1 ≤ n, m ≤ 30。

题目解析:两种方法
1,先检测行,再检测列,唯一一点,就是检测可能有重复
2,一个一个检测,实际上可以直接检测三个,下面方法是直接检测三个

代码:

#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
const int N = 30;
 
int main()
{
	int matrix[N][N];
	int m , n;
	vector<pair<int,int>> vc;
	while(cin >> m >> n){
		//输入矩形 
		for(int i = 0 ; i < m ; i++){
			for(int j = 0; j < n; j++){
				cin >> matrix[i][j];
			}
		}
		
		// 查找行有没有三个连续的
		for(int i = 0 ; i < m ; i++){
			int count = 1;
			int temp = matrix[i][0];
			for(int j = 1; j < n; j++){
				if(temp != matrix[i][j]){
					temp = matrix[i][j];
					if(count >= 3){
						int lie = j - 1;
						for(int k = 0; k < count; k++){
							vc.push_back(make_pair(i,lie));
							lie--;
						}
					}
					count = 1;
				}else{
					count++;
				}
			}
			if(count >= 3){
				int lie = n - 1;
				for(int j = 0; j < count ; j++){
					vc.push_back(make_pair(i,lie));
					lie--;
				}
			}
		}
		
		//查看列有没有连续的
		//查看列连续,实际上需要从,最后一行往上数第三行,作为结尾,因为往下肯定不够三个 
		for(int i = 0 ; i < m - 2; i++){    //这一行就是开始行 
			
			for(int k = 0 ; k < n ; k++){          //列 
				int temp = matrix[i][k];
				int count = 1;    //计数 
				for(int j = i + 1; j < m ; j++){  //要从开始行往下数到最后一行 
					if(temp != matrix[j][k]){
						temp = matrix[j][k];
						if(count >= 3){
							int hang = j - 1;
							for(int h = 0; h < count; h++){
								vc.push_back(make_pair(hang,k));
								hang--;
							}
						}
						count = 1;
					}else{
						count++;
					}
				}
				if(count >= 3){
					int hang = m - 1;
					for(int j = 0; j < count ; j++){
						vc.push_back(make_pair(hang,k));
						hang--;
											
					}
				}
			}
			
		} 
		//消除 
		for(int i = 0 ; i <vc.size(); i++){
			int x = vc[i].first;
			int y = vc[i].second;
			matrix[x][y] = 0; 
		}
		
		for(int i = 0 ; i < m ; i++){
			for(int j = 0; j < n; j++){
				cout << matrix[i][j] << " ";
			}
			cout << endl;
		}
		vc.clear();
	}
    return 0;
}

/* 测试用例 
4 5
2 2 3 1 2
3 4 5 1 4
2 3 2 1 3
2 2 2 4 4

******测试第二种,第三种 
4 5
2 2 3 1 2
3 4 1 1 1 
2 3 2 1 3
2 2 2 1 4

4 5
2 2 3 1 2
1 1 1 1 1
2 3 2 1 3
2 2 2 1 4
*/

/*
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
const int N = 30;

int main(){
	int matrix[N][N];
	int m , n;
	int flag[N][N];     //标记矩阵 
	while(cin >> m >> n){
		//输入矩形 
		for(int i = 0 ; i < m ; i++){
			for(int j = 0; j < n; j++){
				cin >> matrix[i][j];
			}
		}
		
		memset(flag , -1 , sizeof(flag));   //初始化标记矩阵 
		//查找行
		for(int i = 0 ; i < m ; i++){
			for(int j = 0 ; j < n - 2 ; j++){
				if(matrix[i][j] == matrix[i][j + 1] && matrix[i][j + 1] == matrix[i][j + 2]){
					flag[i][j] = flag[i][j + 1] = flag[i][j + 2] = 1;
				}
			}
		}
		
		//查找列
		for(int j = 0 ; j < n; j++){
			for(int i = 0 ; i < m - 2; i++){
				if(matrix[i][j] == matrix[i + 1][j] && matrix[i + 1][j] == matrix[i + 2][j]){
					flag[i][j] = flag[i + 1][j] = flag[i + 2][j] = 1;
				}
			}
		}
		//消除 
		for(int i = 0 ; i < m ; i++){
			for(int j = 0; j < n; j++){
				if(flag[i][j] == 1){
					matrix[i][j] = 0;
				}
			}
		}
		
		for(int i = 0 ; i < m ; i++){
			for(int j = 0; j < n; j++){
				cout << matrix[i][j] << " ";
			}
			cout << endl;
		}
	}
    return 0;
}


*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值