信号与系统公式笔记(1)

这篇笔记主要记录了信号与系统中关于卷积的公式及其应用,包括阶跃函数u(t)的卷积计算,以及解决微分方程的特解表达式。文中通过例题解析了如何利用公式直接求解问题,并强调了解题时对输入信号类型的注意点,如冲激响应和阶跃响应的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一些卷积的公式。这里记录的是平时解题遇到的问题,所以可能比较乱。


进入正题,贫僧要记录的是这个公式:

x1(tt1)x2(tt2)=x(tt1t2)x(t)=x1(t)t2(t) x 1 ( t − t 1 ) ∗ x 2 ( t − t 2 ) = x ( t − t 1 − t 2 ) x ( t ) = x 1 ( t ) ∗ t 2 ( t )

上面这个公式就是卷积的延时性质。
然后就是:
u(t)u(t)=tu(t) u ( t ) ∗ u ( t ) = t u ( t )

上面这个其实就是用了积分器的性质。
和:
x(t)u(t)=tx(τ)dτ x ( t ) ∗ u ( t ) = ∫ − ∞ t x ( τ ) d τ

也是用了积分器的性质。
例题:

  • u(t1)u(t2) u ( t − 1 ) ∗ u ( t − 2 ) u(t) u ( t ) 是阶跃函数。

这个题目直接套用上面的公式就可以了:

τ=t12=t3=τu(τ)=(t3)u(t3) 令 τ = t − 1 − 2 = t − 3 原 式 = τ u ( τ ) = ( t − 3 ) u ( t − 3 )

还是比较简单的例题。。。


x(t)σ(t1)=x(t1)x1(t)(x2(t)+x3(t))=x1(t)x2(t)+x1(t)x3(t) x ( t ) ∗ σ ( t 1 ) = x ( t 1 ) x 1 ( t ) ∗ ( x 2 ( t ) + x 3 ( t ) ) = x 1 ( t ) ∗ x 2 ( t ) + x 1 ( t ) ∗ x 3 ( t )

例题:
x1(t)=u(t1)+u(t2)+u(t3) x 1 ( t ) = u ( t − 1 ) + u ( t − 2 ) + u ( t − 3 ) x2(t)=σ(t2)+σ(t)+σ(t+2) x 2 ( t ) = σ ( t − 2 ) + σ ( t ) + σ ( t + 2 ) ,求 x1(t)x2(t) x 1 ( t ) ∗ x 2 ( t )
可以直接得出答案:

x1(t)x2(t)=x1(t2)+x1(t)+x1(t+2) x 1 ( t ) ∗ x 2 ( t ) = x 1 ( t − 2 ) + x 1 ( t ) + x 1 ( t + 2 )


一定要记得的几个求解微分方程的特解的式子:

激励函数 x(t) x ( t ) 响应函数的特解 yp(t) y p ( t )
E E (常数) B(常数)
tm t m B0+B1t+B2t2++Bmtm0 B 0 + B 1 t + B 2 t 2 + ⋯ + B m t m ( 0 不 是 方 程 的 特 征 根 )
tr(B0+B1t+B2t2++Bmtm)0r t r ( B 0 + B 1 t + B 2 t 2 + ⋯ + B m t m ) ( 0 是 方 程 的 一 个 r 重 特 征 根 )
eαt e α t Beαt B e α t α α 不是方程的特征根)
Btreαt B t r e α t α α 是方程的一个 r r 重特征根)
cosωt sinωt sin ⁡ ω t B1cosωt+B2sinωt B 1 cos ⁡ ω t + B 2 sin ⁡ ω t ±jω ± j ω 不是特征根)
t(B1cosωt+B2sinωt) t ( B 1 cos ⁡ ω t + B 2 sin ⁡ ω t ) ±jω ± j ω 是特征根)

其实上面的 tr t r 都可以那些部分都可以理解成 r=k r = k k k 就是指对应的某个特解表达式里的量(α或者 jω j ω )是特征方程的 k k 重特征根。

例题:郑军里老师的《信号与系统》52页例2-4.


单位冲激响应符号: h(t)
单位阶跃响应符号: g(t) g ( t )

注意用经典法在解微分方程的时候,要记得整理,右边的输入部分一定不要有 u(t) u ( t ) ,因为那是给输入加上的时间条件,给定了特解的约束条件。不用看 u(t) u ( t ) ,直接查表格里面除了 u(t) u ( t ) 之外的部分,然后直接带入方程中。就是要记得在解完全解之后加上 u(t) u ( t ) 限制时间(或者直接在方程最右边标明 (t>0) ( t > 0 ) )(但是冲激相应里面的 u(t) u ( t ) 一定要保留代入方程里面)。

例题:孙国霞老师的《信号与系统》P72例2-11


求冲激响应的时候要把输入 x(t)=σ(t) x ( t ) = σ ( t ) ,求阶跃响应的时候也差不多这样。所以如果微分方程右边的输入式子里面出现了 x(t) x ′ ( t ) 之类的也要对应的把 σ(t) σ ( t ) 求导。

同时注意的是,令左边(输出)的最高次导的次数为 n n ,而输入的为m,那么要注意冲激响应要相对应地改变( n=m n = m h(t) h ( t ) 包含一个 σ(t) σ ( t ) n<m n < m 时就要包含对应的导数项)。

解题的时候代公式就可以了,左边的输出 h(t) h ( t ) 用下面的公式直接代入,右边如果是求冲激响应的话就代入 σ(t) σ ( t ) ,阶跃响应的话就带入阶跃函数,然后平衡方程左右两边的系数。

系统方程式冲激响应 h(t) h ( t )
一阶(特征根 α=C α = − C dr(t)dt+Cr(t)=E(t) d r ( t ) d t + C r ( t ) = E ( t ) Eeαtu(t) E e α t u ( t )
dr(t)dt+Cr(t)=Ede(t)dt d r ( t ) d t + C r ( t ) = E d e ( t ) d t Eσ(t)+Eαeαtu(t) E σ ( t ) + E α e α t u ( t )
二阶(特征根 α1,α2=C1±C214C22 α 1 , α 2 = − C 1 ± C 1 2 − 4 C 2 2 d2r(t)dt2+C1dr(t)dt+C2r(t)=Ee(t) d 2 r ( t ) d t 2 + C 1 d r ( t ) d t + C 2 r ( t ) = E e ( t ) Eα1α2(eα1teα2t)u(t) E α 1 − α 2 ( e α 1 t − e α 2 t ) u ( t )
d2r(t)dt2+C1dr(t)dt+C2r(t)=Ede(t)dt d 2 r ( t ) d t 2 + C 1 d r ( t ) d t + C 2 r ( t ) = E d e ( t ) d t Eα1α2(α1eα1tα2eα2t)u(t) E α 1 − α 2 ( α 1 e α 1 t − α 2 e α 2 t ) u ( t )

例题:郑氏《信号与系统》64页的例2-9.、88页2-9.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值