记录一些卷积的公式。这里记录的是平时解题遇到的问题,所以可能比较乱。
进入正题,贫僧要记录的是这个公式:
上面这个公式就是卷积的延时性质。
然后就是:
上面这个其实就是用了积分器的性质。
和:
也是用了积分器的性质。
例题:
- 求 u(t−1)∗u(t−2) u ( t − 1 ) ∗ u ( t − 2 ) , u(t) u ( t ) 是阶跃函数。
这个题目直接套用上面的公式就可以了:
还是比较简单的例题。。。
例题:
令
x1(t)=u(t−1)+u(t−2)+u(t−3)
x
1
(
t
)
=
u
(
t
−
1
)
+
u
(
t
−
2
)
+
u
(
t
−
3
)
,
x2(t)=σ(t−2)+σ(t)+σ(t+2)
x
2
(
t
)
=
σ
(
t
−
2
)
+
σ
(
t
)
+
σ
(
t
+
2
)
,求
x1(t)∗x2(t)
x
1
(
t
)
∗
x
2
(
t
)
。
可以直接得出答案:
一定要记得的几个求解微分方程的特解的式子:
激励函数 x(t) x ( t ) | 响应函数的特解 yp(t) y p ( t ) |
E E (常数) | (常数) |
tm t m | B0+B1t+B2t2+⋯+Bmtm(0不是方程的特征根) B 0 + B 1 t + B 2 t 2 + ⋯ + B m t m ( 0 不 是 方 程 的 特 征 根 ) |
tr(B0+B1t+B2t2+⋯+Bmtm)(0是方程的一个r重特征根) t r ( B 0 + B 1 t + B 2 t 2 + ⋯ + B m t m ) ( 0 是 方 程 的 一 个 r 重 特 征 根 ) | |
eαt e α t | Beαt B e α t ( α α 不是方程的特征根) |
Btreαt B t r e α t ( α α 是方程的一个 r r 重特征根) | |
或 sinωt sin ω t | B1cosωt+B2sinωt B 1 cos ω t + B 2 sin ω t ( ±jω ± j ω 不是特征根) |
t(B1cosωt+B2sinωt) t ( B 1 cos ω t + B 2 sin ω t ) ( ±jω ± j ω 是特征根) |
其实上面的 tr t r 都可以那些部分都可以理解成 r=k r = k , k k 就是指对应的某个特解表达式里的量(或者 jω j ω )是特征方程的 k k 重特征根。
例题:郑军里老师的《信号与系统》52页例2-4.
单位冲激响应符号:
单位阶跃响应符号:
g(t)
g
(
t
)
注意用经典法在解微分方程的时候,要记得整理,右边的输入部分一定不要有 u(t) u ( t ) ,因为那是给输入加上的时间条件,给定了特解的约束条件。不用看 u(t) u ( t ) ,直接查表格里面除了 u(t) u ( t ) 之外的部分,然后直接带入方程中。就是要记得在解完全解之后加上 u(t) u ( t ) 限制时间(或者直接在方程最右边标明 (t>0) ( t > 0 ) )(但是冲激相应里面的 u(t) u ( t ) 一定要保留代入方程里面)。
例题:孙国霞老师的《信号与系统》P72例2-11
求冲激响应的时候要把输入 x(t)=σ(t) x ( t ) = σ ( t ) ,求阶跃响应的时候也差不多这样。所以如果微分方程右边的输入式子里面出现了 x′(t) x ′ ( t ) 之类的也要对应的把 σ(t) σ ( t ) 求导。
同时注意的是,令左边(输出)的最高次导的次数为 n n ,而输入的为,那么要注意冲激响应要相对应地改变( n=m n = m 时 h(t) h ( t ) 包含一个 σ(t) σ ( t ) , n<m n < m 时就要包含对应的导数项)。
解题的时候代公式就可以了,左边的输出 h(t) h ( t ) 用下面的公式直接代入,右边如果是求冲激响应的话就代入 σ(t) σ ( t ) ,阶跃响应的话就带入阶跃函数,然后平衡方程左右两边的系数。
系统方程式 | 冲激响应 h(t) h ( t ) | |
一阶(特征根 α=−C α = − C ) | dr(t)dt+Cr(t)=E(t) d r ( t ) d t + C r ( t ) = E ( t ) | Eeαtu(t) E e α t u ( t ) |
dr(t)dt+Cr(t)=Ede(t)dt d r ( t ) d t + C r ( t ) = E d e ( t ) d t | Eσ(t)+Eαeαtu(t) E σ ( t ) + E α e α t u ( t ) | |
二阶(特征根 α1,α2=−C1±C21−4C2√2 α 1 , α 2 = − C 1 ± C 1 2 − 4 C 2 2 ) | d2r(t)dt2+C1dr(t)dt+C2r(t)=Ee(t) d 2 r ( t ) d t 2 + C 1 d r ( t ) d t + C 2 r ( t ) = E e ( t ) | Eα1−α2(eα1t−eα2t)u(t) E α 1 − α 2 ( e α 1 t − e α 2 t ) u ( t ) |
d2r(t)dt2+C1dr(t)dt+C2r(t)=Ede(t)dt d 2 r ( t ) d t 2 + C 1 d r ( t ) d t + C 2 r ( t ) = E d e ( t ) d t | Eα1−α2(α1eα1t−α2eα2t)u(t) E α 1 − α 2 ( α 1 e α 1 t − α 2 e α 2 t ) u ( t ) |
例题:郑氏《信号与系统》64页的例2-9.、88页2-9.