信号与系统公式笔记(9)——Z变换

还是齐开悦博士的视频,不过这次没看完就自己看着书总结了(还是觉得看书更加高效率)。

重新提一下,一定要把课本的例题过一遍,因为例题有很详细的解析(孙国霞的书的话比较少资料,贫僧觉得还是看吴大正的比较好,至少课后习题有答案解析,这样可以多很多习题来练手。现在流的汗都是当初买错书脑子进的水。。。),而且做完之后可以看得出自己那一步想漏了或者想错了,所以无论如何都要过一遍。

首先复习一下前面讲的拉氏变换:
拉氏变换比傅里叶变换的适用范围更加广泛,但是还是被收敛域限制住了(而傅里叶的限制是被积函数绝对可积)。为了保证能够积分出答案,所以要对 σ \sigma σ有限制,这就是收敛域。
∫ − ∞ + ∞ f ( t ) e − σ t e − j ω t d t \int_{-\infty}^{+\infty}f(t)e^{-\sigma t}e^{-\mathrm{j}\omega t}\mathrm{d}t +f(t)eσtejωtdt
所以每次答题的时候一定要加上对应的收敛域,不然公式没意义(可能结果不成立)。
比较有用的是单边,因为可以用来算零状态和零输入。
要记清楚正负号对收敛域的影响(例如 e − a t u ( t ) → 1 s + a e^{-at}\mathrm{u}(t) \rightarrow \frac{1}{s + a} eatu(t)s+a1的定义域是 R e [ s ] &gt; − a Re[s] &gt; -a Re[s]>a,而 e a t u ( − t ) → − 1 s − a e^{at}\mathrm{u}(-t) \rightarrow -\frac{1}{s - a} eatu(t)sa1但是定义域方向是翻过来的 R e [ s ] &lt; + a Re[s] &lt; +a Re[s]<+a

基本性质中拉氏变换只比傅里叶变换多了初值和终值定理,其他的差不多。
一定要记住两阶的微分性质(通用的是 f ( n ) ( t ) s n F ( s ) − ∑ m = 0 n − 1 s n − 1 − m f ( m ) ( 0 − ) f^{(n)}(t)s^nF(s) - \sum_{m = 0}^{n-1}s^{n - 1 - m}f^{(m)}(0_-) f(n)(t)snF(s)m=0n1sn1mf(m)(0)两阶就是 f ( 2 ) ( t ) = s 2 F ( s ) − s 1 f ( 0 ) ( 0 − ) − s 0 f ( 1 ) ( 0 − ) f^{(2)}(t)=s^2F(s) - s^{1}f^{(0)}(0_-) - s^0f^{(1)}(0_-) f(2)(t)=s2F(s)s1f(0)(0)s0f(1)(0))。
熟练用拉氏反变换的部分分式展开法(记得注意收敛域,如果题目没有给收敛域的话就要另外讨论)。
熟练用拉氏变换来分析电路(记得各种元件对应的s域模型,记串联的基本上就可以了)。
周期信号的拉氏变换是 F ( s ) =

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值