信号与系统公式笔记(8)——拉普拉斯变换

本文深入探讨了拉普拉斯变换,强调其与傅里叶变换的联系和区别,指出它是傅里叶变换的推广。内容涵盖了拉普拉斯变换的定义、收敛域、性质、反变换,以及在电路分析中的应用。重点讨论了系统函数和周期信号的拉氏变换,阐述了如何使用拉普拉斯变换解决微分方程并分析电路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里是关于第5章的内容,拉普拉斯变换。。。其实基本上内容和傅里叶变换差不太多,基本上傅里叶变换学到的概念都可以在修改后用在拉普拉斯变换上。大部分截图来自齐开悦博士的课程录像的说。

傅里叶变换是拉普拉斯变换的特殊情况,拉普拉斯是傅里叶变换的推广,它们之间的最大不同就是拉普拉斯实在 s = σ + j ω s = \sigma + \mathrm{j}\omega s=σ+jω,积分域不同。

基本内容:

  1. 拉普拉斯变换定义,收敛域
  2. 拉普拉斯变换的性质(和傅里叶变换类似)(重要,能简化计算)
  3. 拉普拉斯反变换(主要是部分分式法)
  4. 拉普拉斯变换与电路分析(一定要记住元件对应的拉氏变换模型)
  5. 系统函数(挺重要的性质,求出了系统函数可以很方便地求输出)
  6. 拉普拉斯变换与傅里叶变换关系(关键词:虚轴)

对不符合狄利克雷条件的函数无法做傅里叶变换,所以搞出来个拉普拉斯变换。
这里写图片描述
e S t \mathrm{e}^{St} eSt的例子: S = δ + j ω e S t = e δ t ⋅ e j ω t S = \delta + \mathrm{j}\omega\quad \mathrm{e}^{St} = \mathrm{e}^{\delta t}\cdot \mathrm{e}^{\mathrm{j}\omega t} S=δ+jωeSt=eδtejωt

拉氏变换和Z变换时傅里叶变换的推广,傅里叶变换是它们的特例。

拉氏变换

拉氏变换定义与收敛域


从傅里叶变换到拉氏变换
这里写图片描述

双边拉氏变换定义:
这里写图片描述
最下面那个公式里面的积分极限的下限的 0 − 0_- 0是为了表示包括冲激信号(单边拉氏变换才有用)。

这里写图片描述
例如原信号是 e 2 t \mathrm{e}^{2t} e2t,让 δ = − 3 \delta = -3 δ=3,最后的积分对象就变成了 e − t \mathrm{e}^{-t} et,这样在总体上就是收敛的,就可以用到傅里叶变换。这样拉氏变换就可以比傅里叶变换用得更广泛。

补充:如果一个信号是因果信号,那么单边拉氏变换和双边是一样的。

这里写图片描述
这里写图片描述
记得 u ( t ) → π δ ( ω ) + 1 j ω u(t)\rightarrow \pi\delta(\omega) + \frac{1}{\mathrm{j}\omega} u(t)πδ(ω)+jω1,最后结果是 1 S \frac{1}{S} S1,因为刚好 S > 0 S > 0 S>0,不包含 0 0

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值