信号与系统公式笔记(3)

本文是关于信号与系统的笔记,主要阐述了LTI系统的线性特性,包括零输入响应和零状态响应的概念。讨论了如何区分自由响应和强迫响应,并解释了它们与零输入、零状态响应的关系。此外,还介绍了冲激响应、阶跃响应的计算方法,以及卷积在求解系统响应中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考了上海交通大学的讲课录像,b站av号:5868266。

提醒:LTI系统里面的“线性”只限于系统零输入响应与系统的存储能量,零状态响应与系统接收到的输入。因为系统的完全响应 = 零输入响应(系统在没有输入时储能元件储存的能量的输出) + 零状态响应(系统在收到输入后的输出)。如果零输入响应=0,那么其实全响应可以和输入成线性关系。
其实上面说的就是LTI的两种线性特性:零状态线性和零输入线性。

例题1:
例题
例题1的解在下面的说。


系统响应划分:
按照输入来源:零输入响应和零状态响应
按照输出来分:暂态响应(随着时间增长趋于零)和稳态响应(随着时间增长不趋于零)
按照响应的决定形式:自由响应和强迫响应

关于自由响应和强迫响应贫僧想详细点介绍:
自由响应: 也称固有响应,由系统本身特性决定,与外加激励无关。对应方程的齐次解(由系统产生)。
强迫相应:形式取决于外加激励。对应于特解(由外加输入产生)。

难点:上面这两种和零输入、零状态响应的关系:
零输入响应一定是自由响应(零输入没有输入,所以输出一定是系统产生的)。
零状态响应不仅会产生强迫响应,还会产生自由响应(因为求特解的时候还是要用到齐次解,所以求出的零状态响应有部分是属于自由响应的(齐次解部分),另一部分对应强迫响应(特解))。


关于求出的解里面的待定系数的求法:
零输入响应其实是系统方程的齐次解,由非零的系统状态值 vc(0) v c ( 0 − ) iL(0) i L ( 0 − ) 决定的初始值求出待定系数。
零状态响应实在激励作用下求系统方程的非齐次解,由状态值 vc(0) v c ( 0 − ) iL(0) i L ( 0 − ) 为零决定的初始值求出待定系数。


关于求零状态响:
卷积

r(t)=e(t)h(t) r ( t ) = e ( t ) ∗ h ( t )

其实就相当于把原信号反向,分解成无数个冲激函数,然后输入到系统中。


冲激响应
定义:
系统在单位冲激信号 σ(t) σ ( t ) 作用下产生的零状态响应,一般用 h(t) h ( t ) (通常看到这个符号就要想到是冲激响应)表示。

冲激 σ(t) σ ( t ) t=0 t = 0 时转为系统的储能(由 vc(0+) v c ( 0 + ) 体现), t>0 t > 0 时,在非零初始条件下齐次方程的解,就是原系统的冲激响应。

用特征方程求出特征根,就可以列出 vc(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值