Stable Diffusion修复老照片-图生图

文章介绍了如何使用StableDiffusionWebUI和特定模型如realisticVisionV20、ControlNetTile以及ADetailer来修复老照片。操作步骤包括选择模型、设置提示词和反向提示词、参数调整、使用ControlNetUnit和修脸插件,最终生成高质量的修复图像。
摘要由CSDN通过智能技术生成

修复老照片的意义就不多说了,相信大家都明白,这里直接开讲方法。

1、原理

这个方法需要一个真实模型,以便让修复的照片看起来比较真实,我这里选择:realisticVisionV20,大家有更好的给我推荐哦。

还需用搭配两个特殊设置:

ControlNet Tile:这是一个ControlNet模型,用于放大和补充细节。在这里就是用来控制图片不要随意乱画,必须按照指定的图片,可以补充细节。

ADetailer:这是一个插件,用于修复人脸,也需要加载对应的模型。

我从网上找了一张比较模糊的照片(如有侵权,请告知替换)。

2、实操

打开Stable Diffusion WebUI,进入“图生图”界面。

(1)选择好大模型,填写合适的提示词和反向提示词。

C站可以下载 realisticVisionV20,

注意提示词需要匹配照片。不会写的同学,可以使用WebUI中的反向推导工具先生成一个,然后再进行修改,我这里贴出这张图的提示词:

提示词:ultra detailed, masterpiece, best quality, an photo of a old man in a hat and a hat on his heads, with greying temples, (looking at viewer), a character portrait, mingei,simple background, clean
反向提示词:easy_negative, NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, skin spots, acnes, skin blemishes,age spot, (ugly:1.331), (duplicate:1.331),(morbid:1.21), (mutilated:1.21), (tranny:1.331),flower,lines,white point,plant,

(2)基础生成参数设置。

图生图这里上传待修复的图片:

缩放模式:裁剪,不改变尺寸的情况下这个没影响,改变尺寸的时候会截取。

采样器:Euler a

采样步数;20

尺寸:768*1064,想要出图的尺寸,一般原图尺寸就可以,生成好了再裁减。

提示词引导系数:7,这是默认值,出图不满意的时候可以调整试试。

重绘强度:这里选择1,以更好的补充细节,可以根据实际情况调整 。

图像生成种子:-1,代表随机种子,建议不要固定,否则每次出来的都一样。

(3)设置ControlNet Unit

在第一个Unit中上传原图;勾选“启用”,否则ControlNet不生效;勾选“Pixel Perfect”,勾选“Allow Preview”。

 

这里选择Control类型为 Tile,注意预处理器和模型都要对应上,都是包含tile的,一般WebUI会自动选择上,没有自动的需要自己选择;

Control Weight 用来控制Tile的权重;

Starting Control Step 和 Ending Control Step 用来控制ControlNet介入图像生成的步骤。

如果想让SD更自由发挥一下,可以调整下权重和介入步数,这里采用默认值。

(4)修脸插件

对于修复大爷的照片,这里感觉没什么用,如果生成效果不好的话,可以试试它。

修脸插件怎么安装?看我另一篇文章,其中人像插件部分有介绍。

(5)最后点击生成,看看效果,还不错!


OK,以上就是本文的主要内容,感谢阅读。

Stable Diffusion是一种开源的像扩展工具,可以用于扩展片的功能。使用Stable Diffusion进行图生的操作如下:首先,启动Stable Diffusion,并打开图生。然后,将要扩展的片拖入图生界面。接下来,在脚本选项中选择“向外绘制第X版”,这时会出现选项,可以选择向哪个方向扩充,并输入扩充的像素数。最后,点击确认即可生成扩展后的片。\[2\] 此外,Stable Diffusion还提供了PNG info功能,用于查看生成的片的像信息。通过PNG info可以查看生成片的提示词、反向提示词、步骤数、采样器、种子等参数。这些参数信息通常会被写入片的exif信息中,可以通过片工具或Python等方式读取。如果在网上看到了感兴趣的Stable Diffusion生成的片,可以通过PNG info查看相关参数设置信息,以便进行复现或微调相应的片。\[3\] #### 引用[.reference_title] - *1* *2* [仅做笔记用:Stable Diffusion 扩展片 / 扩](https://blog.csdn.net/qq_35977139/article/details/131056696)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [图生—AI片生成Stable Diffusion参数及使用方式详细介绍](https://blog.csdn.net/suiyingy/article/details/130348402)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

野生的狒狒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值