顶刊JoE副主编新文:DDD不能简单理解为两个DID间的差分!

近日,埃默里大学经济学副教授Pedro H. C. Sant'Anna的新论文“Better Understanding Triple Differences Estimators”得出了一些令人惊喜的结论,强调不应该将 DDD 设计简单地理解为两个差分(DID)之间的差分。Sant Anna过去几年一直致力于更好地理解和改进“双重差分”方法,同时是Journal of Econometrics和Journal of Business & Economic Statistics的副主编。

图片


作为双重差分法的一种延伸,三重差分法首次由Gruber(1994)提出,三重差分法的核心原理在于处理组间时间趋势差异问题。当实验组和对照组存在非平行趋势时,该方法通过引入第三重差分维度进行修正。具体实施路径如下:首先分别在实验地区和对照地区选取未受政策干预的参照组(如特定人群或行业),运用双重差分法测算两组的时间趋势差异量;接着将这一基准趋势差异从传统DID的干预效应估计值中予以剔除。该方法在模型设定上表现为引入三个交互项(地区×时间×组别)的乘积项,这种包含三重交互项的扩展模型即为三重差分法的数理表征。

经济学顶级期刊AER、JPE、QJE于2010至2017年间共刊发过32篇使用过三重差分法的文章(Olden & Møen,2022)。在相关文献中,三重差分法仍更多地被用作异质性分析稳健性检验

图片

图片

Olden & Møen (2022)证明了虽然三重差分法的估计系数是通过两个双重差分法的估计系数再差分得到的,但该系数并不需要通过两个单独的平行趋势假设从而达成因果推断的目标。这是因为只要两个双重差分法的估计系数的偏误是一致的,那么他们差分后得到的结果便是无偏的。因此仅需要一个总体的平行趋势假设成立即可。双重差分损失了自由度,且相较于三重差分法提供的信息也更少。这是因为三重差分法可以帮助估计出溢出效应

而Sant Anna(2025)这篇论文认为不平行的DID不要紧,但是DDD不能简单理解为两个DD的差分,CS DID并不适用于交叠DDD。

图片

三重差分法(DDD)设计在实证研究中被广泛用于放松双重差分(DID)框架下的平行趋势假设。作者揭示:当识别过程需要协变量条件时,常见的DDD实现方式——如计算两个DiD估计量的差值或应用三向固定效应回归模型——通常存在效度缺陷。在交错干预情境下,传统DID方法将所有尚未受处理的单位合并为对照组会导致额外偏误,即便识别无需依赖协变量时亦然。这些发现挑战了传统实证策略,并凸显开发专门适配DDD结构的估计量的必要性。

作者构建了回归调整、逆概率加权及双稳健估计量,这些方法在协变量调整后的DDD平行趋势条件下保持有效性。针对交叠DDD设计,作者展示了如何正确利用多重对照组实现更高信息量的统计推断。模拟研究表明,相较于标准方法,新方法显著降低了偏误并提升了估计精度,为实证研究中的可信DDD估计提供了全新框架。

参考文献

Ortiz-Villavicencio, Marcelo, and Pedro HC Sant'Anna. "Better Understanding Triple Differences Estimators." arXiv preprint arXiv:2505.09942 (2025).

Olden, A., & Møen, J. (2022). The Triple Difference Estimator. The Econometrics Journal, 25(3), 531-553.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值