1.数据增强简介
数据增强(data augmentation),又名数据增广或数据扩充,其本质是通过使用图像处理方法,基于有限的数据产生更多的数据,以此增加训练样本的数量以及多样性,进而提升模型的泛化能力和鲁棒性。
本篇主要涉及到的知识点有:
-
数据增强的定义:明晰数据增强技术的原理及其在深度学习中的意义。
-
数据增强的方法:学会使用图像处理方法实现对于数据集中的样本扩充。
说明:数据增强的对象是已有的训练样本,而图像源扩充的对象是新增的训练样本。
2.为什么需要数据增强?
基于深度学习的目标检测,是通过训练模型在当前定义的网络结构下(此时模型中权重参数的种类与个数已确定)对训练集中的训练样本进行目标检测形式(包含定位信息和分类信息)的推断,并通过当前定义的损失函数(Loss Function)计算推断结果与样本标注(Label)的差异,进而通过反向传播(Back Propagation)算法更新模型中的权重参数(Weight Parameter)。
然而,深度学习系统中的神经网络模型需要大量的参数,大部分都是数以百万计甚至更多,使得这些参数可以正确工作则需要大量的数据进行训练。因此,深度学习模型需要足够的数据支撑才能进行更好地训练。训练样本数量越多,模型的拟合程度将越高,模型的泛化能力将越强。所以,尽可能获得更多的高质量训练数据是必要且重要的。
但是,实际中,样本数量不足或者样本质量不够好(即存在标注缺失或标注不准确等问题)是一种常见情况。开发者往往无法获取大量的数据,尤其是较为特殊的卫星遥感图像或飞行器航拍图像。
为了解决这一问题,数据增强技术应运而生,其概述图如图 1所示。