1 MODIS、Landsat和Sential数据描述及特点
遥感(Remote Sensing)技术应用各种传感器对远距离目标所辐射和反射的电磁波信息,进行收集、处理、成像等操作,现已成为获取地球表面及其环境信息的重要手段。MODIS(Moderate-resolution Imaging Spectroradiometer,中分辨率成像光谱仪)、Landsat系列卫星以及Sentinel(哨兵)卫星,是当前遥感数据领域的三大支柱。所以,熟悉及掌握MODIS/Landsat/Sentinel遥感数据的特点、应用及下载方法,对于促进科学研究、提升环境监测能力、指导灾害应急响应及促进可持续发展等方面具有深远的意义。
1.1 MODIS数据特点
MODIS参数 | |
空间分辨率 | 250 m (1-2波段);500 m (3-7波段);1000 m (8-36波段) |
扫描宽度 | 2330km |
时间分辨率 | 1天 |
光谱波段 | 36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖 。 |
轨道 | 705KM,降轨上午10:30过境,升轨下午1:30过境;太阳同步;近极地圆轨道 |
设计寿命 | 5年 |
MODIS以其每日覆盖全球的高频观测能力,成为监测全球环境变化、气候趋势及农作物生长状况的重要工具。MODIS是传感器名称,搭载在美国Aqua卫星(下午星)或者Terra卫星(上午星)上,美国地球观测系统(EOS,Earth Observation System)极化中一系列卫星中的2颗。有36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖。MODIS的多波段数据可以同时提供反映陆地表面状况、云边界、云特性、海洋水色、浮游植物、生物地理、化学、大气中水汽、气溶胶、地表温度、云顶温度、大气温度、臭氧和云顶高度等特征的信息。可用于对地表、生物圈、固态地球、大气和海洋进行长期全球观测。其产品等级越高,数据处理情况越为良好。如0级产品是原始数据,4级产品完成了图像的几何校正,辐射校正等操作。
1.2 Landsat数据特点
Landsat数据是美国地质调查局(USGS)和NASA共同开发的遥感数据系列,具有长时间序列、高空间分辨率(30米),并且自1972年起就开始为地球表面提供持续的观测。Landsat数据广泛应用于林业碳汇、林业生物量估算以及其他环境监测领域。它的高空间分辨率和较长的历史时间序列,使其成为林业研究和资源管理中非常重要的数据源。
卫星参数 | Landsat1 | Landsat2 | Landsat3 | Landsat4 | Landsat5 | Landsat6 | Landsat7 |
发射时间 | 1972.7.23 | 1975.1.12 | 1978.3.5 | 1982.7.16 | 1984.3 | 1993.1 | 1999.4.15 |
覆盖周期 | 18天 | 18天 | 18天 | 16天 | 16天 | 16天 | |
扫幅宽度 | 185km | 185km | 185km | 185km | 185km | 185km | |
波段数 | 4 | 4 | 4 | 7 | 7 | 8 | |
机载传感器 | MSS | MSS | MSS | MSS、TM | MSS、TM | ETM+ | |
运行情况 | 1978退役 | 1976失灵,1980修复,1982退役 | 1983年退役 | 1983年TM传感器失效,退役 | 在役服务 | 发射失败 | 2003.5月出现故障 |
Landsat-5卫星是美国陆地卫星系列中的第五颗。Landsat-5卫星于1984年3月发射升空,它是一颗光学对地观测卫星,有效载荷为专题制图仪(TM)和多光谱成像仪(MSS)。Landsat-5卫星所获得的图像是迄今为止在全球应用最为广泛、成效最为显著的地球资源卫星遥感信息源,同时Landsat-5卫星也是目前在轨运行时间最长的光学遥感卫星。
Landsat-7卫星于1999年4月15日发射,是美国陆地探测系列卫星。Landsat-7卫星装备有增强型专题制图仪(ETM+),ETM+有8个波段的感应器,覆盖着从红外到可见光的不同波长范围。与Landsat-5卫星的TM传感器相比,ETM+增加了15米分辨率的一个波段,在红外波段的分辨率更高,因此有更高的准确性。2003年5月31日起,Landsat-7的扫描仪校正器出现异常,只能采用SLC-off模型对数据进行校正。
Landsat-8卫星于2013年2月11日发射,是美国陆地探测系列的后续卫星,Landsat-8卫星装备有陆地成像仪(简称OLI)和热红外传感器(简称TIRS),每16天可以实现一次全球覆盖。OLI 包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km,覆盖了从红外到可见光的不同波长范围。与Landsat-7卫星的ETM+传感器相比,OLI增加了一个蓝色波段(0.433-0.453μm)和一个短波红外波段(band9-0.136-1.390μm),蓝色波段主要用于海岸带观测,短波红外波段包括水汽强吸收特征,可用于云检测。TIRS 用于收集地球两个热区地带的热量流失,能够了解所观测地带水分消耗。
Landsat 9 卫星于2021年9月27日发射升空,携带了二代陆地成像仪(Operational Land Imager 2,OLI-2)和二代热红外传感器(Thermal Infrared Sensor 2,TIRS-2)。OLI-2负责捕获地球表面可见、近红外和短波红外波段的观测,辐射测量精度从 Landsat 8 的12位量化提高到14位量化,并略微提高了总体信噪比(遥感图像质量评价指标)。OLI-2设计之初是 Landsat 8 的OLI的备份,提供与先前陆地卫星光谱、空间、辐射和几何质量一致的可见和近红外/短波红外(VNIR/SWIR)图像。其提供的数据包含9个光谱波段。其中,全色波段的最大地面采样距离(ground sampling distance,GSD)为15米,其余波段的GSD为30米。除此以外,OLI-2 还提供内部校准源,以确保辐射测量的准确性和稳定性,并具备太阳和月球校准的能力。
Landsat 9 的二代热红外传感器(TIRS-2)与 Landsat 8 上TIRS一样,在两个热红外波段测量地球表面发出的热辐射,最大地面采样距离为100米,这两个波段的性能比 Landsat 8 的热红外波段要好。但在风险等级和设计上,TIRS-2进行了改进,降低了杂光影响。此外,TIRS-2还提供了一个内部黑体校准源以及空间视图功能。
1.3 Sentinel数据特点
Sentinel卫星系列,有众多“传感器”。其数据有如下特点:
高空间和时间分辨率。Sentinel卫星提供的遥感数据具有较高的空间分辨率,尤其是Sentinel-2的10米分辨率,适用于精细的地表监测。同时,Sentinel卫星具有较高的重访频率,可以支持实时的地表变化监测。
多光谱和多传感器。通过不同的传感器(如光学、多光谱、雷达等),Sentinel能够提供多样化的数据,支持从地表到大气的多层次、多维度监测。
全球覆盖。Sentinel卫星覆盖地球全域,不受地理位置限制,可为全球环境和气候变化提供重要数据。
高数据质量和连续性。Sentinel卫星的数据质量高,且持续发射,确保了数据的长期性和稳定性。
开源和免费数据。Sentinel数据完全公开,可以通过Copernicus Open Access Hub等平台免费获取,极大促进了科研、政策和商业应用的开发。
卫星名称 | Sentinel-1 | Sentinel-2(光学成像) | Sentinel-3(海洋与陆地监测) | Sentinel-4(气象监测) | Sentinel-5P(大气监测) |
主要传感器 | C波段合成孔径雷达(SAR) | 多光谱成像仪(MSI) | 海表高度、温度和颜色的观测仪器 | 大气成分监测仪器 | TROPOMI(总大气监测成像仪) |
分辨率 | 10米至40米(依照观测模式不同) | 10米(多光谱)、20米(大范围影像)13个波段,覆盖可见光、近红外、短波红外等 | 300米(可见光/红外波段)、1km(海洋色素波段) | 3-7 km | 7 km × 3.5 km |
主要应用 | 监测地表变形、洪水、滑坡、森林砍伐、农业作物生长等 | 高空间分辨率和时间分辨率,支持农田、森林、湿地等地物的监测。 | 海洋监测、气候变化、环境监测等 | 大气成分分析、空气质量监测、气候变化 | 大气污染、臭氧层监测、温室气体排放等 |
特点 | 全天候工作,不受天气和光照条件限制,可以获取雷达影像,适用于地形监测、灾害应急等。 | 土地覆盖变化监测、农作物生长监测、城市化进程、灾害管理等 | 专注于地球的海洋和大气层监测,可以为海洋表面温度、海冰、气候变化等提供数据。 | 针对大气污染、温室气体的监测与研究。 | 专门监测大气中的气体成分,如二氧化氮、臭氧、一氧化碳等。 |
2 林业领域的应用
2.1 MODIS数据的应用
MODIS数据主要用于全球的地面和大气观测。在林业碳汇估算中具有多种应用,具体包括:森林覆盖与变化监测。MODIS的森林覆盖产品(如MOD44B)可以监测全球森林的分布、变化和退化。这些数据为碳汇模型提供了基础信息,帮助评估森林的碳储量变化。森林火灾监测。MODIS提供的火灾监测数据(如MOD14)可以及时捕捉火灾的发生及其扩展,有助于评估火灾对碳储量的影响。碳储量估算。通过MODIS获取的叶面积指数(LAI)、净初级生产力(NPP)、地表温度(LST)等数据,可以用来估算森林的碳储量和生物量。LAI和NPP特别重要,因为它们直接与植物的光合作用和碳固定能力相关。碳排放监测。MODIS的时间序列数据可用于跟踪森林砍伐和变化区域,从而估算碳排放。例如,森林砍伐导致的碳释放可以通过对比森林变化和森林类型进行估算。
MODIS数据同样为生物量估算提供了重要支持,尤其是在大尺度和长期监测方面。叶面积指数(LAI)和生物量关系。LAI是衡量植物叶片覆盖的关键指标,通常与植物的生物量高度相关。MODIS提供的LAI数据(如MOD15产品)常用于生物量模型中,帮助研究者推算森林的叶面积和生物量。净初级生产力(NPP)与生物量。NPP是衡量植物通过光合作用固定碳的能力,是生物量的间接指示。MODIS的NPP产品(如MOD17)提供了全球范围内的年度和月度NPP数据,可以用来估算不同区域的生物量变化。遥感-生物量回归模型。使用MODIS数据与地面调查数据相结合,通过回归分析建立生物量估算模型。MODIS数据中的多光谱信息(如红外波段和可见光波段)可以帮助推算森林的生物量。森林类型与生物量分布。MODIS数据可以辅助划分森林类型,并为生物量分布建模提供空间信息。不同的森林类型(如热带雨林、温带森林等)生物量分布不同,因此MODIS提供的森林分布数据是估算生物量的重要输入。
2.2 Landsat数据的应用
Landsat数据的高空间分辨率(30米)非常适合监测森林的分布和变化。通过分析Landsat影像中的森林覆盖变化,可以估算森林的碳储量变化以及森林砍伐或退化造成的碳排放。时间序列分析:Landsat的长期数据记录(自1972年起)提供了多年的森林变化监测数据,能够帮助评估碳汇的动态变化,尤其是在大规模森林砍伐、火灾或其他灾害发生后的碳释放情况。
2.2.1 Landsat数据估算森林碳汇
碳储量估算模型:Landsat数据可以与地面调查数据结合,用于建立碳储量估算模型。例如,可以基于Landsat的多光谱影像计算植被指数(如NDVI、EVI等),进一步推算出碳储量。植物的叶面积指数(LAI)和净初级生产力(NPP)等指标也可以通过Landsat影像反演。森林类型分类:Landsat数据能够精细地分类不同的森林类型(如热带雨林、温带森林等),不同的森林类型具有不同的碳储量,因此基于Landsat的森林类型分类结果,能够更准确地估算碳储量。碳排放监测:对于受森林砍伐或自然灾害(如火灾、风暴)影响的区域,Landsat数据可以帮助检测森林面积的变化,从而估算由于森林损失或退化导致的碳排放量。例如,利用Landsat的遥感影像跟踪森林的砍伐或退化过程,结合碳排放因子,可以估算大规模森林退化对碳平衡的影响。
2.2.2 Landsat数据估算森林生物量
生物量指的是一个地区或生态系统中植物的总质量,通常用来衡量生态系统的生产力和健康。Landsat数据在林业生物量估算中的应用如下:生物量与植被指数的关系:Landsat影像通过计算NDVI、EVI等植被指数,反映地表的植被覆盖情况。NDVI和EVI等植被指数通常与森林的生物量密切相关,尤其是在森林密度较高的地区。通过建立NDVI和生物量的回归关系,可以利用Landsat数据估算森林生物量。叶面积指数(LAI)的反演:LAI是衡量植被生长状况的关键指标,通常与森林生物量高度相关。Landsat数据通过多光谱影像可以估算LAI,从而间接推算出森林的生物量。LAI与森林的光合作用、碳吸收能力等密切相关,因此是生物量估算中的重要参数。基于遥感的生物量回归模型:Landsat数据提供的高空间分辨率和丰富的光谱信息,使其能够与地面生物量调查数据结合,建立区域或全球的生物量回归模型。这些模型能够根据遥感影像反演生物量,尤其适用于大尺度森林生物量的估算。不同森林类型的生物量估算:Landsat的高空间分辨率能够有效区分不同类型的森林(如针叶林、阔叶林、混交林等),而不同森林类型的生物量差异较大。利用Landsat进行森林类型分类,可以帮助更精确地估算每种森林类型的生物量。
2.3 Sential数据应用
Sentinel数据,特别是Sentinel-1和Sentinel-2卫星的数据,在林业碳汇和林业生物量估算方面有广泛的应用。由于Sentinel卫星提供的高时空分辨率数据(特别是Sentinel-2的10米分辨率和Sentinel-1的雷达数据),它们非常适合进行全球尺度的森林监测,评估森林生态系统的变化和碳储量。
2.3.1 Sentinel数据估算和监测森林碳汇
森林覆盖变化监测。Sentinel-2:Sentinel-2的高分辨率光学数据适用于森林覆盖变化监测,尤其是通过遥感影像的植被指数(如NDVI、EVI等)分析,可以准确检测森林覆盖的动态变化。通过长期监测森林面积变化,可以推算出碳汇的增加或减少。应用案例:评估森林砍伐、退化、火灾后的碳排放,或森林恢复过程中碳汇的恢复。
森林碳储量估算。Sentinel-2的光谱信息:Sentinel-2提供13个光谱波段,包括可见光、近红外和短波红外波段,这些波段对于森林生长、叶面积指数(LAI)、净初级生产力(NPP)等的反演至关重要。基于这些数据,研究人员可以建立碳储量估算模型,推算森林的碳存储量。应用案例:结合Sentinel-2的数据,可以使用反演模型估算不同森林类型的碳储量,帮助制定森林管理和碳交易政策。
森林火灾监测。Sentinel-1(SAR数据):Sentinel-1的合成孔径雷达(SAR)数据可以全天候监测森林火灾的发生及其影响。SAR影像特别适用于监测火灾后森林的结构变化,例如,火灾后的树木损失、土壤和植被的变化,这些都与碳排放和碳储量损失相关。应用案例:监测火灾造成的森林退化及其碳排放,结合火灾前后的Sentinel-1影像分析火灾造成的生态损害。
森林退化与土地利用变化。Sentinel-1和Sentinel-2结合使用:利用Sentinel-1的雷达影像和Sentinel-2的光学影像,可以监测森林退化和土地利用变化(如非法砍伐、农业扩张等)。这些变化会直接影响森林的碳吸收能力。应用案例:通过时间序列分析森林覆盖变化和退化,估算因人类活动或自然灾害导致的碳释放。
2.3.2 Sentinel数据估算森林生物量
基于植被指数的生物量估算。Sentinel-2的光谱数据:Sentinel-2提供的高分辨率数据(10米)可以计算植被指数(NDVI、EVI等),这些指数与森林的生物量密切相关。通过遥感影像和地面调查数据的结合,可以反演不同地区的森林生物量。应用案例:通过NDVI和EVI等植被指数,结合地面实测数据,建立生物量估算模型,估算森林地区的地上生物量。
叶面积指数(LAI)的反演。Sentinel-2的近红外和短波红外波段:LAI是反映植物叶片数量和生长状况的关键指标,通常与生物量成正比。Sentinel-2的近红外和短波红外波段数据可以用来反演森林的LAI,从而估算森林的生物量。应用案例:基于LAI反演生物量,结合时间序列数据分析生物量的变化,尤其是在森林生长季节和不同气候条件下。
森林类型分类与生物量估算。Sentinel-2数据的森林分类:Sentinel-2的高分辨率光学数据可以有效地区分不同的森林类型(如热带雨林、温带森林、针叶林等)。不同森林类型的生物量存在显著差异,因此,利用Sentinel-2数据进行森林类型分类,可以精确估算各类森林的生物量。应用案例:通过森林类型分类,结合每种类型的生物量模型,推算整个区域的森林生物量。
时间序列分析与生物量监测。Sentinel-1和Sentinel-2的时间序列数据:通过多时相的遥感数据(尤其是Sentinel-2的月度重访周期和Sentinel-1的频繁雷达影像),可以对森林生物量进行动态监测。例如,可以分析森林的生物量随季节变化的趋势,或者评估森林在不同气候变化情景下的生物量变化。应用案例:在大尺度的森林监测中,使用时间序列分析来评估森林健康、监测生物量的年际变化,并预测未来森林生物量的动态变化。
森林健康与生产力评估。生产力评估与NPP。Sentinel-2的数据:通过利用植被指数(如NDVI、EVI),可以推算森林的生产力,尤其是净初级生产力(NPP)。NPP反映了森林通过光合作用固定的碳量,是生物量积累和碳汇变化的关键指标。应用案例:基于NDVI和EVI的变化,可以监测森林生长的健康状态,推算NPP,进一步估算碳吸收能力。
3 三种类型数据下载方法
3.1 非批量下载
3.1.1 MODIS数据下载
1、NASA Earthdata Search
官方网站:Your Gateway to NASA Earth Observation Data | NASA Earthdata
下载地址:Earthdata Search
2、Earthdata Search
官方网站: Earthdata Search
3、NASA Worldview
官方网站 NASA Worldview
NASA Worldview的特点:
实时性:通过集成多源卫星数据,NASA Worldview能够为用户提供接近实时(卫星观测后60-125min)的地球观测图像。
交互性:用户可以通过滑动时间轴查看历史数据,放大和缩小不同的区域以获取更详细的图像信息,还可以根据需要调整图层的显示,以满足不同的研究和分析需求。
多源性:平台集成了来自不同卫星和传感器的数据,包括NASA自己的Terra/MODIS等,以及可能的合作机构数据,为用户提供多样化的数据源选择。
支持下载:虽然NASA Worldview主要是一个在线浏览平台,但用户也可以下载基础数据,特别是与全球降水测量任务相关的数据,以支持时间关键型应用领域如野火管理、空气质量测量和洪水监测等。
3.1.2 Landsat 数据
1、USGS Earthexplorer
官方网站:USGS(https://earthexplorer.usgs.gov),科学上网。
2、LandsatLook
官方网站:LandsatLook(https://landsatlook.usgs.gov)
下载网站:LandsatLook Explore(LandsatLook)
3.1.3 Sentinel 数据
官方网站:Copernicus(https://dataspace.copernicus.eu)
下载网站:Copernicus Browser(https://browser.dataspace.copernicus.eu)
3.2 批量下载
3.2.1 MODIS批量下载
首先,在官方下载帮助(即"Download Help")中选择"Python方式",点击"Download source"超链接,获取文件为"laads-data-download.py.txt",然后移除".txt"后缀扩展。
python laads-data-download.py -s 数据订单地址 -d 下载存放地址 -t 账号秘钥
Landsat数据及Sential数据批量下载
请看这2篇博文:
MODIS/Landsat/Sentinel下载教程详解【常用网站及方法枚举】-CSDN博客(主要参考)
https://blog.csdn.net/twg666/article/details/134089146