MODIS&Landsat&Sential数据的特点、应用和下载方式

1 MODIS、Landsat和Sential数据描述及特点

遥感(Remote Sensing)技术应用各种传感器对远距离目标所辐射和反射的电磁波信息,进行收集、处理、成像等操作,现已成为获取地球表面及其环境信息的重要手段。MODIS(Moderate-resolution Imaging Spectroradiometer,中分辨率成像光谱仪)、Landsat系列卫星以及Sentinel(哨兵)卫星,是当前遥感数据领域的三大支柱。所以,熟悉及掌握MODIS/Landsat/Sentinel遥感数据的特点、应用及下载方法,对于促进科学研究、提升环境监测能力、指导灾害应急响应及促进可持续发展等方面具有深远的意义。

1.1 MODIS数据特点

MODIS参数

空间分辨率

250 m (1-2波段);500 m (3-7波段);1000 m (8-36波段)

扫描宽度

2330km

时间分辨率

1天

光谱波段

36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖 。

轨道

705KM,降轨上午10:30过境,升轨下午1:30过境;太阳同步;近极地圆轨道

设计寿命

5年

MODIS以其每日覆盖全球的高频观测能力,成为监测全球环境变化、气候趋势及农作物生长状况的重要工具。MODIS是传感器名称,搭载在美国Aqua卫星(下午星)或者Terra卫星(上午星)上,美国地球观测系统(EOS,Earth Observation System)极化中一系列卫星中的2颗。有36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖。MODIS的多波段数据可以同时提供反映陆地表面状况、云边界、云特性、海洋水色、浮游植物、生物地理、化学、大气中水汽、气溶胶、地表温度、云顶温度、大气温度、臭氧和云顶高度等特征的信息。可用于对地表、生物圈、固态地球、大气和海洋进行长期全球观测。其产品等级越高,数据处理情况越为良好。如0级产品是原始数据,4级产品完成了图像的几何校正,辐射校正等操作。

1.2 Landsat数据特点

Landsat数据是美国地质调查局(USGS)和NASA共同开发的遥感数据系列,具有长时间序列、高空间分辨率(30米),并且自1972年起就开始为地球表面提供持续的观测。Landsat数据广泛应用于林业碳汇、林业生物量估算以及其他环境监测领域。它的高空间分辨率和较长的历史时间序列,使其成为林业研究和资源管理中非常重要的数据源。

卫星参数

Landsat1

Landsat2

Landsat3

Landsat4

Landsat5

Landsat6

Landsat7

发射时间

1972.7.23

1975.1.12

1978.3.5

1982.7.16

1984.3

1993.1

1999.4.15

覆盖周期

18天

18天

18天

16天

16天

16天

扫幅宽度

185km

185km

185km

185km

185km

185km

波段数

4

4

4

7

7

8

机载传感器

MSS

MSS

MSS

MSS、TM

MSS、TM

ETM+

运行情况

1978退役

1976失灵,1980修复,1982退役

1983年退役

1983年TM传感器失效,退役

在役服务

发射失败

2003.5月出现故障

Landsat-5卫星是美国陆地卫星系列中的第五颗。Landsat-5卫星于1984年3月发射升空,它是一颗光学对地观测卫星,有效载荷为专题制图仪(TM)和多光谱成像仪(MSS)。Landsat-5卫星所获得的图像是迄今为止在全球应用最为广泛、成效最为显著的地球资源卫星遥感信息源,同时Landsat-5卫星也是目前在轨运行时间最长的光学遥感卫星。

Landsat-7卫星于1999年4月15日发射,是美国陆地探测系列卫星。Landsat-7卫星装备有增强型专题制图仪(ETM+),ETM+有8个波段的感应器,覆盖着从红外到可见光的不同波长范围。与Landsat-5卫星的TM传感器相比,ETM+增加了15米分辨率的一个波段,在红外波段的分辨率更高,因此有更高的准确性。2003年5月31日起,Landsat-7的扫描仪校正器出现异常,只能采用SLC-off模型对数据进行校正。

Landsat-8卫星于2013年2月11日发射,是美国陆地探测系列的后续卫星,Landsat-8卫星装备有陆地成像仪(简称OLI)和热红外传感器(简称TIRS),每16天可以实现一次全球覆盖。OLI 包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km,覆盖了从红外到可见光的不同波长范围。与Landsat-7卫星的ETM+传感器相比,OLI增加了一个蓝色波段(0.433-0.453μm)和一个短波红外波段(band9-0.136-1.390μm),蓝色波段主要用于海岸带观测,短波红外波段包括水汽强吸收特征,可用于云检测。TIRS 用于收集地球两个热区地带的热量流失,能够了解所观测地带水分消耗。

Landsat 9 卫星于2021年9月27日发射升空,携带了二代陆地成像仪(Operational Land Imager 2,OLI-2)和二代热红外传感器(Thermal Infrared Sensor 2,TIRS-2)。OLI-2负责捕获地球表面可见、近红外和短波红外波段的观测,辐射测量精度从 Landsat 8 的12位量化提高到14位量化,并略微提高了总体信噪比(遥感图像质量评价指标)。OLI-2设计之初是 Landsat 8 的OLI的备份,提供与先前陆地卫星光谱、空间、辐射和几何质量一致的可见和近红外/短波红外(VNIR/SWIR)图像。其提供的数据包含9个光谱波段。其中,全色波段的最大地面采样距离(ground sampling distance,GSD)为15米,其余波段的GSD为30米。除此以外,OLI-2 还提供内部校准源,以确保辐射测量的准确性和稳定性,并具备太阳和月球校准的能力。

Landsat 9 的二代热红外传感器(TIRS-2)与 Landsat 8 上TIRS一样,在两个热红外波段测量地球表面发出的热辐射,最大地面采样距离为100米,这两个波段的性能比 Landsat 8 的热红外波段要好。但在风险等级和设计上,TIRS-2进行了改进,降低了杂光影响。此外,TIRS-2还提供了一个内部黑体校准源以及空间视图功能。

1.3 Sentinel数据特点

Sentinel卫星系列,有众多“传感器”。其数据有如下特点:

高空间和时间分辨率。Sentinel卫星提供的遥感数据具有较高的空间分辨率,尤其是Sentinel-2的10米分辨率,适用于精细的地表监测。同时,Sentinel卫星具有较高的重访频率,可以支持实时的地表变化监测。

多光谱和多传感器。通过不同的传感器(如光学、多光谱、雷达等),Sentinel能够提供多样化的数据,支持从地表到大气的多层次、多维度监测。

全球覆盖。Sentinel卫星覆盖地球全域,不受地理位置限制,可为全球环境和气候变化提供重要数据。

高数据质量和连续性。Sentinel卫星的数据质量高,且持续发射,确保了数据的长期性和稳定性。

开源和免费数据。Sentinel数据完全公开,可以通过Copernicus Open Access Hub等平台免费获取,极大促进了科研、政策和商业应用的开发。

卫星名称

Sentinel-1

Sentinel-2(光学成像)

Sentinel-3(海洋与陆地监测)

Sentinel-4(气象监测)

Sentinel-5P(大气监测)

主要传感器

C波段合成孔径雷达(SAR)

多光谱成像仪(MSI)

海表高度、温度和颜色的观测仪器

大气成分监测仪器

TROPOMI(总大气监测成像仪)

分辨率

10米至40米(依照观测模式不同)

10米(多光谱)、20米(大范围影像)13个波段,覆盖可见光、近红外、短波红外等

300米(可见光/红外波段)、1km(海洋色素波段)

3-7 km

7 km × 3.5 km

主要应用

监测地表变形、洪水、滑坡、森林砍伐、农业作物生长等

高空间分辨率和时间分辨率,支持农田、森林、湿地等地物的监测。

海洋监测、气候变化、环境监测等

大气成分分析、空气质量监测、气候变化

大气污染、臭氧层监测、温室气体排放等

特点

全天候工作,不受天气和光照条件限制,可以获取雷达影像,适用于地形监测、灾害应急等。

土地覆盖变化监测、农作物生长监测、城市化进程、灾害管理等

专注于地球的海洋和大气层监测,可以为海洋表面温度、海冰、气候变化等提供数据。

针对大气污染、温室气体的监测与研究。

专门监测大气中的气体成分,如二氧化氮、臭氧、一氧化碳等。

2 林业领域的应用

2.1 MODIS数据的应用

MODIS数据主要用于全球的地面和大气观测。在林业碳汇估算中具有多种应用,具体包括:森林覆盖与变化监测。MODIS的森林覆盖产品(如MOD44B)可以监测全球森林的分布、变化和退化。这些数据为碳汇模型提供了基础信息,帮助评估森林的碳储量变化。森林火灾监测。MODIS提供的火灾监测数据(如MOD14)可以及时捕捉火灾的发生及其扩展,有助于评估火灾对碳储量的影响。碳储量估算。通过MODIS获取的叶面积指数(LAI)、净初级生产力(NPP)、地表温度(LST)等数据,可以用来估算森林的碳储量和生物量。LAI和NPP特别重要,因为它们直接与植物的光合作用和碳固定能力相关。碳排放监测。MODIS的时间序列数据可用于跟踪森林砍伐和变化区域,从而估算碳排放。例如,森林砍伐导致的碳释放可以通过对比森林变化和森林类型进行估算。

MODIS数据同样为生物量估算提供了重要支持,尤其是在大尺度和长期监测方面。叶面积指数(LAI)和生物量关系。LAI是衡量植物叶片覆盖的关键指标,通常与植物的生物量高度相关。MODIS提供的LAI数据(如MOD15产品)常用于生物量模型中,帮助研究者推算森林的叶面积和生物量。净初级生产力(NPP)与生物量。NPP是衡量植物通过光合作用固定碳的能力,是生物量的间接指示。MODIS的NPP产品(如MOD17)提供了全球范围内的年度和月度NPP数据,可以用来估算不同区域的生物量变化。遥感-生物量回归模型。使用MODIS数据与地面调查数据相结合,通过回归分析建立生物量估算模型。MODIS数据中的多光谱信息(如红外波段和可见光波段)可以帮助推算森林的生物量。森林类型与生物量分布。MODIS数据可以辅助划分森林类型,并为生物量分布建模提供空间信息。不同的森林类型(如热带雨林、温带森林等)生物量分布不同,因此MODIS提供的森林分布数据是估算生物量的重要输入。

2.2 Landsat数据的应用

Landsat数据的高空间分辨率(30米)非常适合监测森林的分布和变化。通过分析Landsat影像中的森林覆盖变化,可以估算森林的碳储量变化以及森林砍伐或退化造成的碳排放。时间序列分析:Landsat的长期数据记录(自1972年起)提供了多年的森林变化监测数据,能够帮助评估碳汇的动态变化,尤其是在大规模森林砍伐、火灾或其他灾害发生后的碳释放情况。

2.2.1 Landsat数据估算森林碳汇

碳储量估算模型:Landsat数据可以与地面调查数据结合,用于建立碳储量估算模型。例如,可以基于Landsat的多光谱影像计算植被指数(如NDVI、EVI等),进一步推算出碳储量。植物的叶面积指数(LAI)和净初级生产力(NPP)等指标也可以通过Landsat影像反演。森林类型分类:Landsat数据能够精细地分类不同的森林类型(如热带雨林、温带森林等),不同的森林类型具有不同的碳储量,因此基于Landsat的森林类型分类结果,能够更准确地估算碳储量。碳排放监测:对于受森林砍伐或自然灾害(如火灾、风暴)影响的区域,Landsat数据可以帮助检测森林面积的变化,从而估算由于森林损失或退化导致的碳排放量。例如,利用Landsat的遥感影像跟踪森林的砍伐或退化过程,结合碳排放因子,可以估算大规模森林退化对碳平衡的影响。

2.2.2 Landsat数据估算森林生物量

生物量指的是一个地区或生态系统中植物的总质量,通常用来衡量生态系统的生产力和健康。Landsat数据在林业生物量估算中的应用如下:生物量与植被指数的关系:Landsat影像通过计算NDVI、EVI等植被指数,反映地表的植被覆盖情况。NDVI和EVI等植被指数通常与森林的生物量密切相关,尤其是在森林密度较高的地区。通过建立NDVI和生物量的回归关系,可以利用Landsat数据估算森林生物量。叶面积指数(LAI)的反演:LAI是衡量植被生长状况的关键指标,通常与森林生物量高度相关。Landsat数据通过多光谱影像可以估算LAI,从而间接推算出森林的生物量。LAI与森林的光合作用、碳吸收能力等密切相关,因此是生物量估算中的重要参数。基于遥感的生物量回归模型:Landsat数据提供的高空间分辨率和丰富的光谱信息,使其能够与地面生物量调查数据结合,建立区域或全球的生物量回归模型。这些模型能够根据遥感影像反演生物量,尤其适用于大尺度森林生物量的估算。不同森林类型的生物量估算:Landsat的高空间分辨率能够有效区分不同类型的森林(如针叶林、阔叶林、混交林等),而不同森林类型的生物量差异较大。利用Landsat进行森林类型分类,可以帮助更精确地估算每种森林类型的生物量。

2.3 Sential数据应用

Sentinel数据,特别是Sentinel-1和Sentinel-2卫星的数据,在林业碳汇和林业生物量估算方面有广泛的应用。由于Sentinel卫星提供的高时空分辨率数据(特别是Sentinel-2的10米分辨率和Sentinel-1的雷达数据),它们非常适合进行全球尺度的森林监测,评估森林生态系统的变化和碳储量。

2.3.1 Sentinel数据估算和监测森林碳汇

森林覆盖变化监测。Sentinel-2:Sentinel-2的高分辨率光学数据适用于森林覆盖变化监测,尤其是通过遥感影像的植被指数(如NDVI、EVI等)分析,可以准确检测森林覆盖的动态变化。通过长期监测森林面积变化,可以推算出碳汇的增加或减少。应用案例:评估森林砍伐、退化、火灾后的碳排放,或森林恢复过程中碳汇的恢复。

森林碳储量估算。Sentinel-2的光谱信息:Sentinel-2提供13个光谱波段,包括可见光、近红外和短波红外波段,这些波段对于森林生长、叶面积指数(LAI)、净初级生产力(NPP)等的反演至关重要。基于这些数据,研究人员可以建立碳储量估算模型,推算森林的碳存储量。应用案例:结合Sentinel-2的数据,可以使用反演模型估算不同森林类型的碳储量,帮助制定森林管理和碳交易政策。

森林火灾监测。Sentinel-1(SAR数据):Sentinel-1的合成孔径雷达(SAR)数据可以全天候监测森林火灾的发生及其影响。SAR影像特别适用于监测火灾后森林的结构变化,例如,火灾后的树木损失、土壤和植被的变化,这些都与碳排放和碳储量损失相关。应用案例:监测火灾造成的森林退化及其碳排放,结合火灾前后的Sentinel-1影像分析火灾造成的生态损害。

森林退化与土地利用变化。Sentinel-1和Sentinel-2结合使用:利用Sentinel-1的雷达影像和Sentinel-2的光学影像,可以监测森林退化和土地利用变化(如非法砍伐、农业扩张等)。这些变化会直接影响森林的碳吸收能力。应用案例:通过时间序列分析森林覆盖变化和退化,估算因人类活动或自然灾害导致的碳释放。

2.3.2 Sentinel数据估算森林生物量

基于植被指数的生物量估算。Sentinel-2的光谱数据:Sentinel-2提供的高分辨率数据(10米)可以计算植被指数(NDVI、EVI等),这些指数与森林的生物量密切相关。通过遥感影像和地面调查数据的结合,可以反演不同地区的森林生物量。应用案例:通过NDVI和EVI等植被指数,结合地面实测数据,建立生物量估算模型,估算森林地区的地上生物量。

叶面积指数(LAI)的反演。Sentinel-2的近红外和短波红外波段:LAI是反映植物叶片数量和生长状况的关键指标,通常与生物量成正比。Sentinel-2的近红外和短波红外波段数据可以用来反演森林的LAI,从而估算森林的生物量。应用案例:基于LAI反演生物量,结合时间序列数据分析生物量的变化,尤其是在森林生长季节和不同气候条件下。

森林类型分类与生物量估算。Sentinel-2数据的森林分类:Sentinel-2的高分辨率光学数据可以有效地区分不同的森林类型(如热带雨林、温带森林、针叶林等)。不同森林类型的生物量存在显著差异,因此,利用Sentinel-2数据进行森林类型分类,可以精确估算各类森林的生物量。应用案例:通过森林类型分类,结合每种类型的生物量模型,推算整个区域的森林生物量。

时间序列分析与生物量监测。Sentinel-1和Sentinel-2的时间序列数据:通过多时相的遥感数据(尤其是Sentinel-2的月度重访周期和Sentinel-1的频繁雷达影像),可以对森林生物量进行动态监测。例如,可以分析森林的生物量随季节变化的趋势,或者评估森林在不同气候变化情景下的生物量变化。应用案例:在大尺度的森林监测中,使用时间序列分析来评估森林健康、监测生物量的年际变化,并预测未来森林生物量的动态变化。

森林健康与生产力评估。生产力评估与NPP。Sentinel-2的数据:通过利用植被指数(如NDVI、EVI),可以推算森林的生产力,尤其是净初级生产力(NPP)。NPP反映了森林通过光合作用固定的碳量,是生物量积累和碳汇变化的关键指标。应用案例:基于NDVI和EVI的变化,可以监测森林生长的健康状态,推算NPP,进一步估算碳吸收能力。

3 三种类型数据下载方法

3.1 非批量下载

3.1.1 MODIS数据下载

1、NASA Earthdata Search  

官方网站:Your Gateway to NASA 
Earth Observation Data | NASA Earthdata

下载地址:Earthdata Search

2、Earthdata Search

官方网站: Earthdata Search

下载地址 Find Data - LAADS DAAC

3、NASA Worldview 

官方网站 NASA Worldview

NASA Worldview的特点:

实时性:通过集成多源卫星数据,NASA Worldview能够为用户提供接近实时(卫星观测后60-125min)的地球观测图像。

交互性:用户可以通过滑动时间轴查看历史数据,放大和缩小不同的区域以获取更详细的图像信息,还可以根据需要调整图层的显示,以满足不同的研究和分析需求。

多源性:平台集成了来自不同卫星和传感器的数据,包括NASA自己的Terra/MODIS等,以及可能的合作机构数据,为用户提供多样化的数据源选择。

支持下载:虽然NASA Worldview主要是一个在线浏览平台,但用户也可以下载基础数据,特别是与全球降水测量任务相关的数据,以支持时间关键型应用领域如野火管理、空气质量测量和洪水监测等。

3.1.2 Landsat 数据

1USGS Earthexplorer

官方网站:USGShttps://earthexplorer.usgs.gov),科学上网

2LandsatLook

官方网站:LandsatLookhttps://landsatlook.usgs.gov

下载网站:LandsatLook ExploreLandsatLook

3.1.3 Sentinel 数据

官方网站:Copernicushttps://dataspace.copernicus.eu

下载网站:Copernicus Browserhttps://browser.dataspace.copernicus.eu

3.2 批量下载

3.2.1 MODIS批量下载

首先,在官方下载帮助(即"Download Help")中选择"Python方式",点击"Download source"超链接,获取文件为"laads-data-download.py.txt",然后移除".txt"后缀扩展。

python laads-data-download.py -s 数据订单地址 -d 下载存放地址 -t 账号秘钥

Landsat数据及Sential数据批量下载

请看这2篇博文:

MODIS/Landsat/Sentinel下载教程详解【常用网站及方法枚举】-CSDN博客(主要参考)

https://blog.csdn.net/twg666/article/details/134089146

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liO_Oil

打赏我,开启隐藏模式。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值