题目描述
有n个同学(编号为1到n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学。
游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?
输入输出格式
输入格式:
输入共2行。
第1行包含1个正整数n表示n个人。
第2行包含n个用空格隔开的正整数T1,T2,……,Tn其中第i个整数Ti示编号为i
的同学的信息传递对象是编号为Ti的同学,Ti≤n且Ti≠i
数据保证游戏一定会结束。
输出格式:
输出共 1 行,包含 1 个整数,表示游戏一共可以进行多少轮。
输入输出样例
输入样例#1: 复制
5
2 4 2 3 1
输出样例#1: 复制
3
说明
样例1解释
“我是图”
游戏的流程如图所示。当进行完第 3 轮游戏后, 4 号玩家会听到 2 号玩家告诉他自
己的生日,所以答案为 3。当然,第 3 轮游戏后, 2 号玩家、 3 号玩家都能从自己的消息
来源得知自己的生日,同样符合游戏结束的条件。
对于 30%的数据, n ≤ 200;
对于 60%的数据, n ≤ 2500;
对于 100%的数据, n ≤ 200000。
感觉是找一个图里的最小环,数据到200000,但是它极其特殊,每个点出度均为1,边权均为1,邻接表可以退化为一个next数组(链表),然后就是O(跑得过)的遍历问题了。
先删去不在环上的边,可以发现它们都有一个入度为0的头结点,然后依次遍历直到入度不为1,但还是不写递归的好,虽然这确实很递归,深度万一很大,很可能爆栈,就跟DFS联通块不如BFS安全一样。这时候要将该点(找到的环上的一个点)入度减去1!否则可能存在残余的边。同时计数,取最小值即可。
//Writer:GhostCai && His Yellow Duck
#include<iostream>
#include<cstdio>
#define MAXN 200005
using namespace std;
inline int read_d(){
int s=0;
char c;
while(c=getchar(),c<'0'||c>'9');
while(c<='9'&&c>='0') {
s=s*10+c-'0';
c=getchar();
}
return s;
}
int n,next[MAXN],out[MAXN];
int ans=0x7fffffff;
bool vis[MAXN];
int main(){
// freopen("test.in","r",stdin);
n=read_d();
int x;
for(register int i=1;i<=n;i++){
x=read_d();
next[i]=x;
out[x]++;
}
for(register int i=1;i<=n;i++){
if(out[i]==0){
int j=i;
do{
vis[j]=1;
j=next[j];
}while(out[j]==1&&j);
out[j]--;//!! !!
}
}
for(register int i=1;i<=n;i++){
if(vis[i]) continue;
int nx=i,cnt=0;
while(!vis[nx]){
vis[nx]=1;
nx=next[nx];
cnt++;
}
if(cnt!=1) ans=min(ans,cnt);//!!
}
printf("%d\n",ans);
return 0;
}
20ms可以说是非常快了,但是,但是,有更好的思路。
免去删边的预处理。
方法是 一条道搜到黑(环),对每个点用dis数组记录走到当前点的cnt,可以发现,找到环的时候,环尾减环首加一就是环的长度。
//Writer:GhostCai && His Yellow Duck
#include<iostream>
#include<cstdio>
#define MAXN 200005
using namespace std;
inline int read_d(){
int s=0;
char c;
while(c=getchar(),c<'0'||c>'9');
while(c<='9'&&c>='0') {
s=s*10+c-'0';
c=getchar();
}
return s;
}
int n,next[MAXN];//,out[MAXN];
int ans=0x7fffffff;
bool vis[MAXN];
int cnt=0;
int dis[MAXN];
int main(){
// freopen("test.in","r",stdin);
n=read_d();
int x;
for(register int i=1;i<=n;i++){
x=read_d();
next[i]=x;
// out[x]++;
}
// for(register int i=1;i<=n;i++){
// if(out[i]==0){
// int j=i;
// do{
// vis[j]=1;
// j=next[j];
// }while(out[j]==1&&j);
// out[j]--;//!! !!
// }
// }
for(register int i=1;i<=n;i++){
if(vis[i]) continue;
int nx=i,now=cnt;
while(!vis[nx]){
dis[nx]=++cnt;
vis[nx]=1;
if(dis[next[nx]]>now) ans=min(ans,dis[nx]-dis[next[nx]]+1);
nx=next[nx];
}
// if(cnt!=1) ans=min(ans,cnt);//!!
}
printf("%d\n",ans);
}
正常tarjan算法
#include<iostream>
#include<stack>
#include<cstring>
#define MAXN 200006
using namespace std;
int n;
int cnt,ans=1<<30;
int head[MAXN],ecnt;
struct Edge{
int to,next;
}e[MAXN];
inline void add(int x,int y){
e[++ecnt].to = y;
e[ecnt].next = head[x];
head[x]=ecnt;
}
bool ins[MAXN];
stack<int> S;
int dfn[MAXN],low[MAXN],indexs;
void tarjan(int id){
// cnt=0;
dfn[id]=low[id]=++indexs;
S.push(id);
ins[id]=1;
for(int i=head[id];i!=-1;i=e[i].next) {
int v=e[i].to ;
if(!dfn[v]){
tarjan(v);
low[id]=min(low[id],low[v]);
}else if(ins[v]){
low[id]=min(low[id],low[v]);
}
}
if(dfn[id]==low[id]){
int elm=-1;
cnt=0;
while(!S.empty()&&elm!=id){
cnt++;
elm=S.top();
ins[elm]=0;
// cout<<elm<<" ";
S.pop() ;
}
if(cnt>2) ans=min(ans,cnt);
}
}
int main(){
memset(head,-1,sizeof(head));
cin>>n;
int x;
for(int i=1;i<=n;i++){
cin>>x;
add(i,x);
}
for(int i=1;i<=n;i++){
// cnt=0;
if(dfn[i]) continue;
tarjan(i);
// cout<<endl;
}
cout<<ans;
return 0;
}