NC606 序列取反问题

题目陈述

大意:给定一排牛牛,一开始都是不快乐的牛牛,每次等概率选择一个当前不快乐的牛牛,将 [ i , a [ i ] ) [i,a[i]) [i,a[i])中的牛牛都变为快乐,最后所有的牛牛都变为快乐的在 m o d mod mod m m m意义下,的期望步数是多少?

前置知识

  • 这题是一个ACM竞赛中很经典树上期望问题,在该模型上做出一定改动的题目
  • 相信我讲完这个树上期望问题的模型,大家会更加容易理解

模型

给定一颗树,然后每次随机删除一个节点,删除它的同时他的子树都会消失,每次删除的节点等概率,问删除掉所有节点的期望步数

解释模型

  • 此处我解释一下模型的题意

  • 如果给定了一下这棵树
    在这里插入图片描述

  • 有两种删除这棵树的方法,

  • 第一种方案:第一次就选择了 1 1 1,整棵树直接被删除,概率为 1 2 \cfrac{1}{2} 21,执行的步骤为 1 1 1次,所以该方案的期望为 1 ∗ 1 2 = 1 2 1*\cfrac{1}{2}=\cfrac{1}{2} 121=21

  • 第二种方案:第一次选择了 2 2 2,第二次选择了 1 1 1,因为第一选择 2 2 2的概率为 1 2 \cfrac{1}{2} 21,第二次只有一个节点,选择到 1 1 1的概率为 100 % 100\% 100%,故整个方案被实现的概率为 1 2 \cfrac{1}{2} 21,执行的步骤为 2 2 2次,该方案的步骤为 2 ∗ 1 2 = 1 2*\cfrac{1}{2}=1 221=1

  • 总的期望步骤为所有方案的期望之和 1 2 + 1 = 1.5 \cfrac{1}{2}+1=1.5 21+1=1.5

  • 如果给定了如下这棵树
    在这里插入图片描述

  • 经过了上一个例子,相信你已经有一定感觉了

方案 被实现的概率 执行的步骤
1 1/3 1
2 1 1/6 2
3 1 1/6 2
2 3 1 1/6 3
3 2 1 1/6 3
  • 最后总的期望步骤为 1 3 ∗ 1 + 1 6 ∗ 1 + 1 6 ∗ 2 + 1 6 ∗ 3 + 1 6 ∗ 3 = 2 \cfrac{1}{3}*1+\cfrac{1}{6}*1+\cfrac{1}{6}*2+\cfrac{1}{6}*3+\cfrac{1}{6}*3=2 311+611+612+613+613=2

思路

  • 首先我们考虑这样一个问题,对于一个节点,它什么时候会对我们的答案有贡献?
  • 对于一个节点,在一整个完整的操作过程中,无非是有被选到没有被选到,分别对应于 0 0 0 1 1 1,我们用 a i a_i ai来表示这个值
  • 我们假设第 i i i个点被选择到的概率为 p i p_i pi,那么最后它对答案的贡献 E i = 0 ∗ ( 1 − p i ) + 1 ∗ p i = p i E_i=0*(1-p_i)+1*p_i=p_i Ei=0(1pi)+1pi=pi,总得答案就是 E = ∑ i = 1 n E i E=\sum_{i=1}^{n}E_i E=i=1nEi
  • 那么一个点被选到的概率有是多少呢?
  • 我们知道,一个节点被删除掉的情况,只有他的任意一个祖先被选择到,或者他自身被选择到的时候,他就会删除掉。
  • 换言之,反过来,它被选择到的时候,就说明它的任意一个祖先节点都还在
  • 接下来我们用标记为黑色代表删除
  • 我们随机生成一个由 1 1 1 n n n组成的 n n n个数的操作序列,我们首先找到第一个未被染成黑色的节点,然后将这个节点,,即其子树都染成黑色,重复上述操作,直至整个序列都是黑色。
  • 对于节点 i i i,他能被选择到,则说明它的任意一个祖先节点都在它的后面
  • 因为 i i i节点有 d e e p [ i ] − 1 deep[i]-1 deep[i]1个祖先,仅看 i i i节点和它的祖先的情况,考虑插空法,每个祖先前面都有一个空,最后一个祖先后面也有一个空,总共有 d e e p [ i ] deep[i] deep[i]个空位可以插入。
  • 只有第一个空位是满足该节点会被选择到的,即概率 p i = 1 d e e p [ i ] p_i=\cfrac{1}{deep[i]} pi=deep[i]1
  • 故最后的期望为 E = ∑ i = 1 n 1 d e e p [ i ] E=\sum_{i=1}^{n}\cfrac{1}{deep[i]} E=i=1ndeep[i]1

结论

  • 删除树中所有节点的期望步数步数 E = ∑ i = 1 n 1 d e e p [ i ] E=\sum_{i=1}^{n}\cfrac{1}{deep[i]} E=i=1ndeep[i]1,即每个点的深度的倒数之和。

算法1:概率与期望+逆元

算法思路

模型转换

  • 已知了上述结论,那么跟我们的题目又有什么关系呢?
  • 我们题目中所得到的序列,在一定意义上面,可以看成树的先序遍历序列(并非一定是二叉树,此处指的是先访问,再访问其子树),更准确的说应该是一个DFS遍历序列
  • 下面我们用染成黑色,来代表模型中的删除
  • 为什么?因为 i i i位置被选到了, [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]整个区间都被染色了,等价于模型中的, i i i节点和其子树都被染色了
  • 但是,此处肯定有同学想问,为啥它必然是一棵树的dfs遍历序列
  • 我们仔细分析题目
  • 第一,对于可爱值 a i a_i ai有, a i > i a_i>i ai>i且特别的有 a 0 = n a_0=n a0=n(题目中应该是写错了,写成了 a 1 = n a_1=n a1=n
  • 这边 a 0 = n a_0=n a0=n,选择到 i = 0 i=0 i=0表示染色 [ 0 , n − 1 ] [0,n-1] [0,n1],跟我们模型中,删除根节点则整棵树都被删除掉,是等价的
  • 第二,对于任意 i , j i,j i,j,均满足条件:若 i < j i<j i<j,则 a i − 1 < j , a i ≥ a j a_i-1<j,a_i\geq a_j ai1<jaiaj这两个条件一定满足其中1个
  • 我反复推敲了一下,这边的满足应该是二选一而不是至少
  • 我们这样解释这句话,对于一个大于 i i i的数 j j j,若满足 a i − 1 < j a_i-1<j ai1<j则说明,他的覆盖区间 [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]无法覆盖到 j j j位置.
  • 如果满足 a i ≥ a j a_i\geq a_j aiaj则说明, [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]的覆盖范围一定大于 [ j , a [ j ] − 1 ] [j,a[j]-1] [j,a[j]1],等价于我们上面的子树的限制条件
  • 肯定有同学要问,如果没有这个限制条件会怎么样呢?
  • j j j [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]范围内,但是 a [ j ] − 1 a[j]-1 a[j]1不在 [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]范围内,这就相当于一种情况,产生了
  • 但是题目已经把这种情况给规避掉了,一个没有环的图,只可能是DAG(有向无环图),或者是树
  • 但是题目中的限制条件约定了,只存在一个区间完全包含另一个区间,不存在一个区间和另一个区间有交集的情况,故它对于的模型也不可能是DAG(有向无环图)
  • 所以最后他就可以完全等价对应我们的模型树上期望问题

求解期望

  • 既然能对应成一棵树的模型,我们已经知道了树上期望问题的求解是需要深度
  • 那么我们是否需要建树?
  • 答案是否定的,即不需要
  • 为什么?我们考虑区间覆盖 [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1],如果对于一个位置 k k k,他能被 x x x个区间覆盖(包括自身的区间),那么就说明他在 x x x个节点的子树中,换言之, k k k位置也就是有 x − 1 x-1 x1个祖先
  • 即节点 k k k的深度 d e e p [ k ] = x deep[k]=x deep[k]=x
  • 所以我们只需要知道 k k k位置被多少个区间给覆盖,即可知道对应的树中的深度
  • 我们考虑每个区间对于某个位置 k k k的贡献,则有 d e e p [ k ] = ∑ i = 1 n [ i ≤ k < a [ i ] ] deep[k]=\sum_{i=1}^n [i\leq k < a[i]] deep[k]=i=1n[ik<a[i]](此处中括号代表表达式为真返回1,否则返回0)
  • 故知道每个位置在树中对应的深度则有 E = ∑ k = 1 n 1 d e e p [ k ] E=\sum_{k=1}^n \cfrac{1}{deep[k]} E=k=1ndeep[k]1
    E = ∑ k = 1 n 1 ∑ i = 1 n [ i ≤ k < a [ i ] ] E=\sum_{k=1}^n \cfrac{1}{\sum_{i=1}^n [i\leq k < a[i]]} E=k=1ni=1n[ik<a[i]]1
  • 此处需要取模,用到除法,故需要逆元

逆元

  • 此处讲一下费马小定理求解逆元(可能某些地方也会用拓展欧几里得、线性求逆元等方法,但是竞赛的经验就是快速幂求解逆元,的代码运行效率是最高的)
  • 逆元简单理解下,就是你在模运算中除以一个数,等价乘以一个数,那么所乘的这个数,就叫做除以的这个数逆元
  • 即两数在取模 p p p的意义下相乘等于1 a ∗ i n v [ a ] ≡ 1 a*inv[a]\equiv1 ainv[a]1
  • 欧拉定理有 a ϕ ( p ) ≡ 1 ( m o d p ) a^{\phi(p)}\equiv 1\pmod p aϕ(p)1(modp)
  • 其中 ϕ ( p ) \phi(p) ϕ(p)为欧拉函数,代表 1 − p − 1 1-p-1 1p1中与 p p p互质的数个个数, p p p为质数的时候即得到费马小定理
    a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod p ap11(modp)
    a ∗ a p − 2 ≡ 1 ( m o d p ) a*a^{p-2}\equiv 1 \pmod p aap21(modp)
  • 跟上面的逆元对比
    a ∗ i n v [ a ] ≡ 1 ( m o d p ) a*inv[a]\equiv 1 \pmod p ainv[a]1(modp)
  • i n v [ a ] ≡ a p − 2 ( m o d p ) inv[a]\equiv a^{p-2} \pmod p inv[a]ap2(modp)
  • 这样,我们用快速幂即可求解得到 i n v [ a ] inv[a] inv[a]
  • 根据上面的期望表达式 E = ∑ k = 1 n 1 ∑ i = 1 n [ i ≤ k < a [ i ] ] E=\sum_{k=1}^n \cfrac{1}{\sum_{i=1}^n [i\leq k < a[i]]} E=k=1ni=1n[ik<a[i]]1
  • E = ∑ k = 1 n ( ∑ i = 1 n [ i ≤ k < a [ i ] ] ) p − 2 ( m o d p ) E=\sum_{k=1}^n (\sum_{i=1}^n [i\leq k < a[i]] )^{p-2} \pmod p E=k=1n(i=1n[ik<a[i]])p2(modp)
  • 现在我们即可直接求解答案了

代码实现

typedef long long LL;
class Solution {
public:
	int p = 998244353; 
	LL inv(LL a, LL b) //费马小定理,快速幂求解逆元
    {
        LL res = 1;
        while(b)
        {
            if(b & 1) //当前位为1
                res = res * a % p; //乘到答案中
            a = a * a % p; //倍增
            b >>= 1;
        }
        return res; //返回逆元
    }
    int ret(int n, vector<int>& a) {
        LL ans = 0;
        vector<int> d(n); //每一个点的深度,约定deep[root]=1
        for (int i = 0; i < n; i ++ )
            for (int j = i; j < a[i]; j ++ ) //每个点的子树区间
                d[j] ++ ; //j节点的深度加一
        for (int i = 0; i < n; i ++ )
            ans = (ans + inv(d[i], p - 2)) % p; 
            //ans += 1/deep[i]
            // ans = (ans + 1 * inv(deep[i])) % mod
            // ans = (ans + inv(deep[i])) % mod
            //费马小定理有 inv(deep[i]) = deep[i]^(mod - 2)
        return ans;       
    }
};

算法2:概率与期望+逆元+差分约束

算法思路

  • 整道题目的思路基本在上面都讲完了
  • 此处算是一个较大的一个优化
  • 我们可以发现上面的统计贡献,是区间,即对于位置 i i i,它的覆盖区间 [ i , a [ i ] − 1 ] [i,a[i]-1] [i,a[i]1]整体的贡献都 + 1 +1 +1
  • 我们此处用差分约束,来优化区间修改
  • 它的大致思路比较简单,就是差值+前缀和
  • 大致是这样的,对于一个数组 a [ ] = 2 , 3 , 4 , 5 a[]={2,3,4,5} a[]=2,3,4,5
  • 我们可以先构造 d [ 0 ] = a [ 0 ] , d [ i ] = a [ i ] − a [ i − 1 ] , i ≥ 1 d[0]=a[0],d[i]=a[i]-a[i-1],i\geq 1 d[0]=a[0],d[i]=a[i]a[i1],i1,然后我们计算 d [ ] d[] d[]的前缀和数组,是不是就是 a [ ] a[] a[]数组了?
  • 那么现在我们就可以用 d [ ] d[] d[]数组来替代 a [ ] a[] a[]数组
  • 我们要将 [ l , r ] [l,r] [l,r]这个区间的东西都加上1,我们会发现对于 i ∈ [ l − 1 , r ] i\in [l-1,r] i[l1,r]这个区间 d [ i ] d[i] d[i]都不改变,因为 [ l , r ] [l,r] [l,r]集体加一了
  • d [ l ] d[l] d[l]会增加 1 1 1 d [ r + 1 ] d[r+1] d[r+1]会减少 1 1 1
  • 故我们只需要修改两个值,就可以替代原本的 r − l + 1 r-l+1 rl+1次修改
  • 最后在求一遍前缀和还原 a [ ] a[] a[]数组即可

代码实现

typedef long long LL;
class Solution {
public:
	int p = 998244353; 
	LL inv(LL a, LL b) //费马小定理,快速幂求解逆元
    {
        LL res = 1;
        while(b)
        {
            if(b & 1) //当前位为1
                res = res * a % p; //乘到答案中
            a = a * a % p; //倍增
            b >>= 1;
        }
        return res; //返回逆元
    }
    int ret(int n, vector<int>& a) {
        LL ans = 0;
        vector<int> d(n); //每一个点的深度,约定deep[root]=1
        for (int i = 0; i < n; i ++ ) //区间[i,a[i]),左闭右开
            d[i] ++ , d[a[i]] -- ; //左端点+1,右端点-1
        for (int i = 1; i < n; i ++ )
            d[i] += d[i - 1]; //差分约束,维护差分数组
        for (int i = 0; i < n; i ++ )
            ans = (ans + inv(d[i], p - 2)) % p;
            //ans += 1/deep[i]
            // ans = (ans + 1 * inv(deep[i])) % mod
            // ans = (ans + inv(deep[i])) % mod
            //费马小定理有 inv(deep[i]) = deep[i]^(mod - 2)
        return ans;       
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值