数据集官网:Pulse Rate Detection Dataset - PURE | Technische Universität Ilmenau
数据集下载:rPPG-datasets
数据集介绍
-
数据类型:
- PURE 数据集主要包括视频数据和脉搏率标签。视频数据通常是通过高帧率摄像机拍摄的,采集到的人体面部微小运动(即脉搏波动)。
- 每个视频片段都被标注了与之对应的脉搏率(bpm,即每分钟脉搏数)。
-
数据收集方式:
- 数据集中的视频通常采用高帧率(如30Hz或60Hz)摄像机拍摄面部表情的微小变化,基于这些微小的光学信号变化,可以估计出脉搏率。
- 数据集同时也会提供基于其他传感器(如心电图ECG、光电容积脉搏波图PPG)的标注,作为脉搏率的真实参考值。
-
样本量:
- PURE 数据集包含大量视频样本,涵盖了不同的年龄、性别和种族群体。数据集通过考虑不同人群的生理差异,提供了广泛的研究场景。
-
应用领域:
- 该数据集广泛应用于 心率检测 和 无接触生理监测,尤其在需要通过视频监控进行健康监测的场景中具有重要价值。它可以为健康管理系统、智能监控设备提供数据支持。
- 该数据集也用于 深度学习 和 计算机视觉 领域的研究,特别是面向 基于视频的脉搏率估计 和 心血管疾病预测 的方法研究。
-
数据标签:
- 数据集为每个视频样本提供了 精确的脉搏率标签,通常以每分钟脉搏数 (bpm) 的形式表示。通过与真实心电图或其他生理信号对比,确保脉搏率的标注准确。
-
挑战:
- 由于脉搏波动非常微小,纯粹依靠视频信号提取脉搏率是一项具有挑战性的任务,尤其是在不稳定的光照条件、面部表情变化或者视频质量较差的情况下。
- 数据集也包含了不同背景噪声和环境因素下的脉搏率测量,这对建立鲁棒的模型非常重要。
数据集的用途
-
无接触心率监测:
- PURE 数据集的一个主要用途是为基于摄像头的心率监测系统提供训练数据。使用计算机视觉技术和深度学习模型,通过分析视频流中的面部微小变动,估算出脉搏率。
-
健康监控与智能医疗:
- PURE 数据集在远程健康监控系统、智能家居、医疗设备中应用广泛,特别是对于老年人群体和有心脏疾病风险的人群,可以提供实时脉搏率监控,并自动发出预警。
-
基于视频的生理信号估计:
- 研究者利用该数据集可以探索如何通过视频信号进行无接触的生理信号(如脉搏率、呼吸频率等)估计。该任务涉及计算机视觉、信号处理和机器学习技术的结合。
相关技术
-
光学信号分析:
- 脉搏率检测通常依赖面部皮肤的微小变化,这些变化会影响光线反射,并在视频中留下可供分析的信号。基于这一现象,采用 信号去噪、频域分析 和 信号处理技术,例如 PCA(主成分分析)、ICA(独立成分分析)等方法提取脉搏信号。
-
深度学习方法:
- 近年来,基于深度学习的脉搏率估计方法取得了显著进展。卷积神经网络(CNN)、长短时记忆网络(LSTM)和Transformer架构被广泛应用于视频序列的脉搏波提取、特征表示学习和脉搏率预测。