SMIC 微表情数据集下载

SMIC: A Spontaneous Micro-expression Database: Inducement, Collection and Baseline

论文内容
  1. 微表情的定义与重要性: 微表情是指非常短暂的、不由自主的面部表情,能够揭示人们试图隐藏的真实情感。研究微表情对于理解人类欺骗行为尤其重要。尽管心理学家早在1960年代就开始研究微表情,但在计算机视觉领域中,自动分析微表情的研究仍然非常有限,主要原因是缺乏合适的数据库。

  2. 现有研究与数据库的不足: 之前的研究主要集中在人工合成的或模拟的微表情上,缺乏真正自发性的微表情数据。此外,现有的表情数据库大多关注一般的面部表情,而不是微表情,且数据库中的微表情多为模拟,无法完全反映真实情境中的微表情表现。

  3. SMIC数据库的构建动机: 为了促进微表情自动识别技术的发展,作者们创建了一个新的自发性微表情数据库(SMIC)。他们设计了一种情感抑制诱导范式,用于在参与者不自觉地表现出微表情的情况下进行数据收集。SMIC数据库包含164段微表情视频片段,这些片段是从16名参与者中诱发并记录下来的。

  4. 数据采集过程: 数据采集是在一个模拟审讯室的环境中进行的,参与者观看能够诱发强烈情感反应的电影片段,并被要求保持“扑克脸”以隐藏他们的真实感受。高帧率摄像机被用来捕捉参与者的面部反应。数据分为三种类型:高帧率(HS)视频、标准可见光(VIS)视频和近红外(NIR)视频。

  5. 数据库的组成与标注: 最终的SMIC数据库包含164段微表情视频片段,其中70%以上的视频片段由8名参与者在高帧率摄像机下录制。这些微表情片段被标注为三类:积极、消极和惊讶,标注基于参与者的自我报告以及视频片段的逐帧分析。

  6. 基准测试: 为了评估SMIC数据库,作者进行了微表情检测和识别的实验。检测实验旨在将微表情片段与非微表情片段区分开来,而识别实验则是将微表情片段分类为积极、消极或惊讶三类。结果表明,使用高帧率摄像机录制的视频数据在微表情分析中的表现优于标准帧率摄像机的数据。

  7. 未来研究方向: 作者建议未来的研究可以进一步细化微表情的分类,并开发更先进的自动检测与识别微表情的方法,以更好地应用于科学研究或司法审讯中。

数据预览

 数据下载:https://github.com/CodeStoreHub/-Micro-expressions

### 微表情识别数据集 CASME2 的获取方法 微表情作为一种短暂且不易察觉的人类情绪表现形式,在情感计算和人工智能领域具有重要的研究价值。为了支持这一领域的研究工作,CASME2 数据集被广泛应用于微表情识别的任务中[^1]。 #### 数据集简介 CASME2 是目前最常用的微表情数据库之一,它提供了丰富的微表情样本,覆盖多种情绪类别和表情变化模式。这些样本能够帮助研究人员深入理解微表情的特点及其背后的情感信息[^2]。 #### 下载途径 对于希望获得 CASME2 数据集的研究人员或开发者来说,可以通过以下方式完成下载: 1. **官方渠道** 访问 CASME2 官方网站或者相关学术机构发布的链接页面,通常会附带详细的使用协议和技术文档说明。具体地址可能因时间更新有所变动,请通过搜索引擎查找最新版本的发布源。 2. **第三方平台分享** 部分科研工作者会在个人主页或其他公开平台上共享已整理好的数据包。例如 CSDN 提供了一条可供参考的下载路径:<https://download.csdn.net/download/qq_53332949/89720578>。需要注意的是,从这类非正式来源获取资料时务必确认其合法性和完整性[^3]。 3. **联系作者团队** 如果遇到无法正常访问的情况,可以直接邮件联系原始论文中的通讯作者请求协助获取完整的数据集合副本。这种方式虽然耗时较长但成功率较高。 以下是简单的 Python 脚本示例代码片段展示如何初步加载本地存储的数据文件(假设为图像序列格式): ```python import os from PIL import Image def load_casme2_data(data_dir): subjects = [] for subject_folder in sorted(os.listdir(data_dir)): if not os.path.isdir(os.path.join(data_dir, subject_folder)): continue frames = [] frame_files = sorted([f for f in os.listdir(os.path.join(data_dir, subject_folder))]) for img_file in frame_files: img_path = os.path.join(data_dir, subject_folder, img_file) try: with Image.open(img_path) as im: frames.append(im.convert('L')) # Convert to grayscale except Exception as e: print(f"Error loading {img_path}: {e}") subjects.append(frames) return subjects ``` 此函数实现了遍历指定目录下的子文件夹并读取其中所有的图片帧操作,最终返回按主体分类后的灰度图列表结构以便后续处理分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值