SMIC: A Spontaneous Micro-expression Database: Inducement, Collection and Baseline
论文内容
-
微表情的定义与重要性: 微表情是指非常短暂的、不由自主的面部表情,能够揭示人们试图隐藏的真实情感。研究微表情对于理解人类欺骗行为尤其重要。尽管心理学家早在1960年代就开始研究微表情,但在计算机视觉领域中,自动分析微表情的研究仍然非常有限,主要原因是缺乏合适的数据库。
-
现有研究与数据库的不足: 之前的研究主要集中在人工合成的或模拟的微表情上,缺乏真正自发性的微表情数据。此外,现有的表情数据库大多关注一般的面部表情,而不是微表情,且数据库中的微表情多为模拟,无法完全反映真实情境中的微表情表现。
-
SMIC数据库的构建动机: 为了促进微表情自动识别技术的发展,作者们创建了一个新的自发性微表情数据库(SMIC)。他们设计了一种情感抑制诱导范式,用于在参与者不自觉地表现出微表情的情况下进行数据收集。SMIC数据库包含164段微表情视频片段,这些片段是从16名参与者中诱发并记录下来的。
-
数据采集过程: 数据采集是在一个模拟审讯室的环境中进行的,参与者观看能够诱发强烈情感反应的电影片段,并被要求保持“扑克脸”以隐藏他们的真实感受。高帧率摄像机被用来捕捉参与者的面部反应。数据分为三种类型:高帧率(HS)视频、标准可见光(VIS)视频和近红外(NIR)视频。
-
数据库的组成与标注: 最终的SMIC数据库包含164段微表情视频片段,其中70%以上的视频片段由8名参与者在高帧率摄像机下录制。这些微表情片段被标注为三类:积极、消极和惊讶,标注基于参与者的自我报告以及视频片段的逐帧分析。
-
基准测试: 为了评估SMIC数据库,作者进行了微表情检测和识别的实验。检测实验旨在将微表情片段与非微表情片段区分开来,而识别实验则是将微表情片段分类为积极、消极或惊讶三类。结果表明,使用高帧率摄像机录制的视频数据在微表情分析中的表现优于标准帧率摄像机的数据。
-
未来研究方向: 作者建议未来的研究可以进一步细化微表情的分类,并开发更先进的自动检测与识别微表情的方法,以更好地应用于科学研究或司法审讯中。