DEAP数据集 下载方式

DEAP: A Database for Emotion Analysis using Physiological Signals

论文:https://www.eecs.qmul.ac.uk/mmv/datasets/deap/doc/tac_special_issue_2011.pdf

数据集下载:https://github.com/CodeStoreHub/EEG-datasets

论文《DEAP: A Database for Emotion Analysis using Physiological Signals》(DEAP:使用生理信号进行情感分析的数据库)介绍了一个多模态数据集,旨在通过生理信号分析人类的情感状态。研究涉及32名参与者,他们观看了40段时长为一分钟的音乐视频片段,同时记录了他们的生理信号和脑电图(EEG)数据。参与者根据唤醒度(Arousal)、效价(Valence)、喜好度、支配感和熟悉度对视频进行评分。此外,22名参与者的正面面部视频也被录制。

论文的主要贡献和特点包括:

  1. 多模态数据:结合了EEG、外围生理信号(如皮肤电导、心率和呼吸)以及面部视频数据,提供了丰富的情感分析数据源。

  2. 刺激选择:视频片段通过一种新方法选择,该方法结合了last.fm网站的情感标签检索和自动视频高光检测,确保选取的内容能激发情感反应。

  3. 分析与分类:研究探讨了EEG信号频率与参与者情感评分之间的关联。论文还提出了使用EEG、外围生理信号和多媒体内容分析对唤醒度、效价和喜好度进行单次试验分类的方法。

  4. 数据库公开:该数据集已公开,鼓励其他研究人员使用该数据集测试他们的情感状态估计方法,从而推动情感计算领域的发展。

该数据集特别探索了通过音乐视频来引发的情感反应,并进行了相关的情感分类。这一研究对需要情感识别的系统(如自适应音乐视频推荐系统)具有重要意义,同时为情感计算领域做出了重要贡献。

这项工作对于情感智能系统的发展具有重要推动作用,例如能够根据用户情感推荐音乐视频的系统。

数据预览:

 数据集下载:https://github.com/CodeStoreHub/EEG-datasets

一、软件的具体操作 1.建一个文件夹,里面必须有四个文件(Dblank;deapdeap.000;123.dta)前三个文件在一般下载DEAP Version 2.1中都有,直接复制过来就可以,第四个文件是一个数据文件,一般先在excel中先输入,再复制到一个记事本下就可以,注意在记事本下的数据只有数据,不包括决策单元的名称和投入、产出的名称,并且一定要先放产出,后是投入。例子具体见123电子表格和123记事本。 2.对命令Dblank文件进行修改,修改后保存为123.ins文件 3.打开deap软件,运行123.ins 4,回车后自动会有123.out 注意事项:(1) 123.dta;Dblank;123.ins都用记事本打开; (2)数据文件名和命令文件名一定要一样,如例子中都用123 (3)文件夹中一定要包括deap.000文件,如果没有这个文件,打开deap软件,就会出现一闪就没有了的情况。 二,结果的分析 在文件夹中打开123.out,看如下: 1) firm crste vrste scale 1 0.687 1.000 0.687 drs 2 0.814 1.000 0.814 drs 3 0.319 0.709 0.450 drs 4 1.000 1.000 1.000 - 5 1.000 1.000 1.000 - 6 0.336 0.425 0.791 drs 7 0.642 0.648 0.991 irs 8 0.379 0.381 0.994 irs 9 0.702 0.750 0.936 irs 10 1.000 1.000 1.000 - 11 0.304 0.461 0.659 irs 12 0.352 1.000 0.352 irs 13 1.000 1.000 1.000 - 14 0.594 0.929 0.639 irs 15 0.402 1.000 0.402 irs mean 0.635 0.820 0.781 firm:代表例子中的15的样本 crste:技术效率,也叫综合效率 vrste:纯技术效率 scale:规模效率(drs:规模报酬递减;-:规模报酬不变;irs:规模报酬递增) crste=vrste×scale 2) Results for firm: 3 Technical efficiency = 0.709 Scale efficiency = 0.450 (drs) PROJECTION SUMMARY: variable original radial slack projected value movement movement value output 1 7326.380 0.000 0.000 7326.380 output 2 119.910 0.000 0.000 119.910 input 1 15427.000 -4496.010 0.000 10930.990 input 2 5257.970 -1532.371 -1643.828 2081.771 第三个样本的具体分析如下: 纯技术效率=0.709 规模效率=0.450 (drs):规模报酬应该递减 第三个样本的投入产出情况分析: 第一、二产出均没有冗余情况(因为其 radial movement 和 slack movement 均为零) 第一个投入要素有投入冗余4496.010;第二投入要素有投入冗余3176.199=1532.371+1643.828 这个意思是说按第三个样本现在的产出冗余第一个投入要素可以减少4496.010,第二个投入要素可以减少3176.199 Results for firm: 8 Technical efficiency = 0.381 Scale efficiency = 0.994 (irs) PROJECTION SUMMARY: variable original radial slack projected value movement movement value output 1 235.860 0.000 0.000 235.860 output 2 3.760 0.000 6.995 10.755 input 1 777.000 -480.651 0.000 296.349 input 2 132.550 -81.995 0.000 50.555 第八个样本则出现了产出不足的情况,即第二个产出应该比现在增加 6.995 如果投入因素是决策单元可的决定的,而产出因素是不能决定的时,我们分析就可以考虑投入是否能减少,不管产出是否能增加(因为产出是决策单元不可控的因素) 如果产出因素是决策单元可的决定的,而投入因素是不能决定的时,我们分析就可以考虑产出是否能增加,不管投入是否能减少(因为投入是决策单元不可控的因素) 如果样本单元的纯技术效率为1,而规模效率小于1时,这说明样本单元本身的技术效率而言没有投入需要减少、没有产出需要增加;样本单元的综合效率没有达到有效(即1),是因为其规模和投入、产出不相匹配,需要增加规模或减少规模。如例子中的第二个样本单元,其规模应该缩小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值