动态规划(1)-背包问题 python实现

这篇博客探讨了如何使用动态规划解决背包问题,通过一个4磅背包偷窃商品的例子,展示了如何最大化盗窃商品的价值。文章提供了Python代码实现,并通过图解详细解释了解决过程。
摘要由CSDN通过智能技术生成

动态规划将问题分成小问题,并先着手解决这些小问题。

《算法图解》中的一个例子:

假设你是个小偷,背着一个可装4磅东西的背包。你可偷窃的商品有如下3件。

音响 笔记本电脑 吉他
3000美元 2000美元 1500美元
4磅 3磅 1磅

为了让盗窃的商品价值最高,你该选择哪些商品?

代码实现

import numpy as np

def bag(value,weight,capacity,n):
    calculateTable=np.zeros((n,capacity),dtype=np.int32)
    for j in range(capacity):
        if weight[0]<=j+1:
            calculateTable[0,j]=value[0]
        else:
            calculateTable[0,j]=0
    for i in range(1,n):
        for j in range(capacity):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值