用到蛋疼的sort

Wilbur and Points
 
Codeforces Round #331 (Div. 2)



C. Wilbur and Points
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (x, y) belongs to the set, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (x, y) gets number i, then all (x',y') from the set, such that x' ≥ x and y' ≥ y must be assigned a number not less than i. For example, for a set of four points (0, 0), (0, 1), (1, 0) and (1, 1), there are two aesthetically pleasing numberings. One is 1, 2, 3, 4 and another one is 1, 3, 2, 4.

Wilbur's friend comes along and challenges Wilbur. For any point he defines it's special value as s(x, y) = y - x. Now he gives Wilbur some w1, w2,..., wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it's special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input

The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur's set. It's guaranteed that all points are distinct. Also, it is guaranteed that if some point (x, y) is present in the input, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output

If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print "YES" on the first line of the output. Otherwise, print "NO".

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
Input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0
Output
YES
0 0
1 0
2 0
0 1
1 1
Input
3
1 0
0 0
2 0
0 1 2
Output
NO




代码:  

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    #include <queue>
    #include <stack>
    #include <map>
    #include <vector>
    #define INF 0x3f3f3f3f
    #define eps 1e-4
    #define MAXN (200000+10)
    #define MAXM (1000000)
    #define Ri(a) scanf("%d", &a)
    #define Rl(a) scanf("%lld", &a)
    #define Rf(a) scanf("%lf", &a)
    #define Rs(a) scanf("%s", a)
    #define Pi(a) printf("%d\n", (a))
    #define Pf(a) printf("%lf\n", (a))
    #define Pl(a) printf("%lld\n", (a))
    #define Ps(a) printf("%s\n", (a))
    #define W(a) while(a--)
    #define CLR(a, b) memset(a, (b), sizeof(a))
    #define MOD 100000007
    #define LL long long
    #define lson o<<1, l, mid
    #define rson o<<1|1, mid+1, r
    #define ll o<<1
    #define rr o<<1|1
    using namespace std;
    struct Node{
        int x, y, val, id, rec;
    };
    Node num1[MAXN], num2[MAXN];
    bool cmp(Node a, Node b)
    {
        if(a.val != b.val)
            return a.val < b.val;
        else if(a.x != b.x)
            return a.x < b.x;
        else
            return a.y < b.y;
    }
    bool cmp1(Node a, Node b)
    {
        if(a.val != b.val)
            return a.val < b.val;
        else
            return a.id < b.id;
    }
    bool cmp2(Node a, Node b){
        return a.id < b.id;
    }




    int main()
    {
        int n; Ri(n);
        for(int i = 0; i < n; i++)
        {
            Ri(num1[i].x); Ri(num1[i].y);
            num1[i].val = num1[i].y - num1[i].x;
            num1[i].id = i;
        }
        sort(num1, num1+n, cmp);
        for(int i = 0; i < n; i++)
        {
            Ri(num2[i].val);
            num2[i].id = i;
        }
        sort(num2, num2+n, cmp1);
        bool flag = true;
        for(int i = 0; i < n; i++)
        {
            if(num1[i].val != num2[i].val)
            {
                flag = false;
                break;
            }
            else
                num2[i].rec = num1[i].id;
        }
        if(flag)
        {
            sort(num2, num2+n, cmp2);
            sort(num1, num1+n, cmp2);
            for(int i = 1; i < n; i++)
            {
                if(!(num1[num2[i].rec].x > num1[num2[i-1].rec].x || num1[num2[i].rec].y > num1[num2[i-1].rec].y))
                {
                    flag = false;
                    break;
                }
            }
            if(flag)
            {
                printf("YES\n");
                for(int i = 0; i < n; i++)
                    printf("%d %d\n", num1[num2[i].rec].x, num1[num2[i].rec].y);
            }
            else
                printf("NO\n");
        }
        else
            printf("NO\n");
        return 0;
    }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值