【论文阅读】AugSteal: Advancing Model Steal With Data Augmentation in Active Learning Frameworks(2024)

在这里插入图片描述

摘要

With the proliferation of(随着) machine learning models(机器学习模型) in diverse applications, the issue of model security(模型的安全问题) has increasingly become a focal point(日益成为人们关注的焦点). Model steal attacks(模型窃取攻击) can cause significant financial losses(重大的经济损失) to model owners(模型所有者) and potentially threaten(可能威胁) the security of their application scenarios(程序场景的安全性). Traditional model steal attacks(传统模型窃取攻击) are primarily directed(主要针对) at soft-label black boxes(软标签黑盒), but their effectiveness significantly diminishes(有效性大大降低) or even fails in(甚至失效) hard-label scenarios(硬标签场景). To address this, for hard-label black boxes(对于硬标签黑盒), this st

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值