opencv(二)

一:今日主要了解一个矩阵类Mat

Mat常用的构造参数
1. Mat::Mat() 无参数构造方法;
2. Mat::Mat(int rows, int cols, int type) 创建行数为 rows,列数为 col,类型为 type 的图像;
3. Mat::Mat(Size size, int type) 创建大小为 size,类型为 type 的图像;
4. Mat::Mat(int rows, int cols, int type, const Scalar& s) 创建行数为 rows,列数为 col,类型为 type 的图像,并将所有元素初始 化为值 s;
5. Mat::Mat(Size size, int type, const Scalar& s) 创建大小为 size,类型为 type 的图像,并将所有元素初始化为值 s;
6. Mat::Mat(const Mat& m) 将 m 赋值给新创建的对象,此处不会对图像数据进行复制,m 和新对象 共用图像数据;
7. Mat::Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP) 创建行数为 rows,列数为 col,类型为 type 的图像,此构造函数不创建 图像数据所需内存,而是直接使用 data 所指内存,图像的行步长由 step 指定。
8. Mat::Mat(Size size, int type, void* data, size_t step=AUTO_STEP) 创建大小为 size,类型为 type 的图像,此构造函数不创建图像数据所需 内存,而是直接使用 data 所指内存,图像的行步长由 step 指定。
9. Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange) 创建的新图像为 m 的一部分,具体的范围由 rowRange 和 colRange 指 定,此构造函数也不进行图像数据的复制操作,新图像与 m 共用图像数 据;
10. Mat::Mat(const Mat& m, const Rect& roi) 创建的新图像为 m 的一部分,具体的范围 roi 指定,此构造函数也不进 行图像数据的复制操作,新图像与 m 共用图像数据

其中type是指CV_8UC1一类的数据,8U表示八位无符号整数,C后面是通道数。

二:opencv中的归一化函数normalize,把需要处理的数据经过处理之后限制在一个我们需要的范围内,让原本不可比的的数据变得有可比性,并且保持相比较的两个数据之间的相对关系。

函数的基本参数
void normalize(InputArray src,OutputArraydst, double alpha = 1, double beta = 0, intnorm_type = NORM_L2, int dtype = -1, InputArray mask = noArray() )

Parameters:

src
输入数组

dst
输出数组,支持原地运算

alpha
range normalization模式的最小值

beta
range normalization模式的最大值,不用于norm normalization(范数归一化)模式。

normType
归一化的类型,可以有以下的取值:
NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。
NORM_INF:此类型的定义没有查到,根据OpenCV 1的对应项,可能是归一化数组的C-范数(绝对值的最大值)
NORM_L1 : 归一化数组的L1-范数(绝对值的和)
NORM_L2: 归一化数组的(欧几里德)L2-范数

dtype
dtype为负数时,输出数组的type与输入数组的type相同;

否则,输出数组与输入数组只是通道数相同,而tpye=CV_MAT_DEPTH(dtype).

mask
操作掩膜,用于指示函数是否仅仅对指定的元素进行操作。

normalize(src, src_n, 0.0, 1.0, NORM_MINMAX, CV_32FC1);
//src,src_n都是Mat类

http://blog.csdn.net/solomon1558/article/details/44689611

三:Sobel算子
https://www.zhihu.com/question/22298352
☝这是一个介绍卷积的文章

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
opencv介绍Sobel的文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值