题目链接:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
思路:
用动态规划来做,定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次(最少可以为一次,比如一个递增数组,一次交易就够了)交易的最大利润,此为全局最优。
这样做的原因是,第i天和第i-1天的大小关系不确定所致,diff = prices[i] – prices[i – 1]
diff<0时,local[i][j]=global[i-1][j-1];
diff>0时,local[i][j]=global[i-1][j]+diff;//与第i-1天的卖出那次合并为一次交易
global[i][j] = max(local[i][j], global[i - 1][j])
觉得比较好的详细分析:
https://blog.csdn.net/dr_unknown/article/details/51939121
分析:传统的动态规划我们会这样想,到第i天时进行j次交易的最大收益,要么等于到第i-1天时进行j次交易的最大收益(第i天价格低于第i-1天的价格),要么等于到第i-1天时进行j-1次交易,然后第i天进行一次交易(第i天价格高于第i-1天价格时)。于是得到动规方程如下(其中diff = prices[i] – prices[i – 1]):
profit[i][j] = max(profit[i – 1][j], profit[i – 1][j – 1] + diff)
看起来很有道理,但其实不对,为什么不对呢?因为diff是第i天和第i-1天的差额收益,如果第i-1天当天本身也有交易呢(也就是说第i-1天刚卖出了股票,然后又买入等到第i天再卖出),那么这两次交易就可以合为一次交易,这样profit[i – 1][j – 1] + diff实际上只进行了j-1次交易,而不是最多可以的j次,这样得到的最大收益就小了。
那么怎样计算第i天进行交易的情况的最大收益,才会避免少计算一次交易呢?我们用一个局部最优解和全局最有解表示到第i天进行j次的收益,这就是该动态规划的特殊之处。
我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为(其中diff = prices[i] – prices[i – 1]):
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j]),
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值后相比,两者之中取较大值,而全局最优比较局部最优和前一天的全局最优。
local[i][j]和global[i][j]的区别是:local[i][j]意味着在第i天一定有交易(卖出)发生,当第i天的价格高于第i-1天(即diff > 0)时,那么可以把这次交易(第i-1天买入第i天卖出)跟第i-1天的交易(卖出)合并为一次交易,即local[i][j]=local[i-1][j]+diff;当第i天的价格不高于第i-1天(即diff<=0)时,那么local[i][j]=global[i-1][j-1]+diff,而由于diff<=0,所以可写成local[i][j]=global[i-1][j-1]。global[i][j]就是我们所求的前i天最多进行k次交易的最大收益,可分为两种情况:如果第i天没有交易(卖出),那么global[i][j]=global[i-1][j];如果第i天有交易(卖出),那么global[i][j]=local[i][j]。
AC 2ms:
class Solution {
public int maxProfit(int k, int[] prices) {
if(prices.length<2)
return 0;
if(k>=prices.length)
return helper(prices);
int[][] local=new int[prices.length][k+1];
int[][] global=new int[prices.length][k+1];
for(int i=1;i<prices.length;i++){
int diff=prices[i]-prices[i-1];
for(int j=1;j<=k;j++){
local[i][j]=Math.max(global[i-1][j-1],local[i-1][j]+diff);
global[i][j]=Math.max(local[i][j],global[i-1][j]);
}
}
return global[prices.length-1][k];
}
public int helper(int[] prices){
int max=0;
for(int i=1;i<prices.length;i++){
int diff=prices[i]-prices[i-1];
if(diff>0)
max+=diff;
}
return max;
}
}