[NAACL19]无监督循环神经网络文法 (URNNG)

原文链接:

https://godweiyang.com/2019/04/20/NAACL19-URNNG/

论文地址:

Unsupervised Recurrent Neural Network Grammars

代码地址:

harvardnlp/urnng

介绍

这篇是新鲜出炉的NAACL19的关于无监督循环神经网络文法(URNNG)的论文,在语言模型和无监督成分句法分析上都取得了非常不错的结果,主要采用了变分推理和RNNG。本文公式量较大,因此我也推了好久,算法也挺多的,首先上一张我推导的公式笔记:

v2-9aa51924b6f32a25f0a9b452f58262b4_b.jpg

我这篇博客就不按照论文的顺序来讲了,就按照我上面这张笔记讲一讲我的理解吧,很多细节可能会忽略,请参见原文吧。

首先对于无监督成分句法分析,常规做法就是学习一个生成模型 p_{\theta}(x, z) ,就比如RNNG就是一个生成模型,但是缺少句法树 z 的监督信号怎么办呢?现在给你的输入只有句子 x ,那么只能用语言模型 p_{\theta}(x) 来做监督了。习惯上我们喜欢取对数,也就是:

\log p_{\theta}(x) = \log \sum_z p_{\theta}(x, z)

这里就存在几个问题,比如 z 的状态空间太大了,不可能穷举所有的,所以接下来按步骤讲解如何求解。

URNNG模型

先上一张模型图,让大家对整体模型有个大概的认知:

v2-8d79e1bda72a7452cd83ab23e8c4707b_b.jpg

左边是一个推理网络(Inference Network),用来根据输入 x 推理出隐变量也就是句法树 z 的概率分布 q_{\phi}(z | x) 。右边是一个生成模型(Generative Model),用来计算从推理网络中采样出来的句法树 z 的联合概率 p_{\theta}(x, z) ,最后根据上面语言模型算出句子的概率,最大化这个概率即可。

接下来分别讲解这两个部分和具体的优化方法。

Inference Network q_{\phi}(z | x)

首先将词向量 e_i 和位置向量 p_i 拼接,作为推理网络LSTM的输入:

f_i, b_i = {\rm BiLSTM}([e_i, p_i])

然后算出span (i, j) 的得分,计算方式和以往一样,用BiLSTM前后向输出做差,然后通过一个前馈神经网络得到分数:

s_{ij} = {\rm MLP}([f_{j+1} - f_i; b_{i-1} - b_j])

接下来就需要计算句法树的概率分布了,这里不直接计算句法树 z ,而是计算它的邻接矩阵 B 的概率分布,这个邻接矩阵意思就是如果span (i, j) 存在,那么 B_{ij} = 1 ,否则的话 B_{ij} = 0 。然后就可以用CRF计算出邻接矩阵 B 对应的概率:

q_{\phi}(B | x) = \frac{1}{Z_T(x)}\exp(\sum_{i \le j} B_{ij}s_{ij})

其中 Z_T(x) 是配分函数,也就是用来将概率归约到0到1之间的:

Z_T(x) = \sum_{B' \in \mathcal B_T} \exp(\sum_{i \le j} B'_{ij}s_{ij})

注意这里的 \mathcal B_T 并不是所有的01矩阵集合,而是必须满足能产生合法句法树的矩阵,而这情况也很多,不能穷举求解,在这里采用经典的inside算法来求解这个配分函数:

v2-c633ba2325c29e21cd0dd9a1f100bc29_b.jpg

不过我觉得这里是错的!就是这里的两处 s_{ij} 应该改成 \exp(s_{ij}) 。不过具体代码实现的时候并没有这么做,初始值一样都是 \beta[i,i]=s_{ii} ,但是递推的时候采用了如下式子:

\beta[i, j] = \log\sum_{k=i}^{j-1}\exp(s_{ij}+\beta[i,k]+\beta[k+1,j])

其实就是用 e^{\beta} 来取代 \beta 了,化简后就是代码实现这个式子,应该是为了防止数值溢出。

然后就是采样了,推理网络目的就是计算出句法树的概率分布,然后根据这个分布采样出若干个句法树,那么现在给定一棵句法树可以根据上面的算法计算出它的概率了,那怎么采样呢?其实还是可以通过刚刚计算得出的 \beta 数组来采样,采样算法如下:

v2-80a8a398f1acebcef67ffb7658adb720_b.jpg

其实就是自顶向下的根据概率分布来采样每个span的split,用一个队列来保存所有还没有采样出split的span,然后把所有采样出的span在邻接矩阵中的对应值标为1。

最后推理网络采样出了若干个句法树 z ,然后根据CRF计算出每个句法树的概率 q_{\phi}(z | x) ,后面的事情就交给生成网络了。

Generative Model p_{\theta}(x, z)

上面的推理网络采样出了若干个句法树 z ,生成网络的目的就是计算它的联合概率 p_{\theta}(x, z) 。这个其实不难,在之前的RNNG论文笔记中,我已经大致讲过了,可以去复习一下:

Recurrent Neural Network Grammars

这里稍稍做了一些改进。

首先需要定义一个栈用来存放转移的历史状态,这里定义栈里放的元素为二元组 (h, g) ,一个是stack-LSTM编码的输出,一个是子树的结构表示。首先需要预测下一步的action是什么,所以取出栈顶的元素 (h_{prev}, g_{prev}) ,预测action的时候只要用到隐含层输出:

p_t = \sigma(w^T h_{prev} + b)

然后根据这个概率预测action是SHIFT还是REDUCE,下面分两种情况讨论。

如果是SHIFT,那么因为是生成模型,所以需要预测下一个移进的单词是什么:

x  \sim  softmax(Wh_{prev} + b)

然后将单词 x 的词向量输入到stack-LSTM中得到下一个时刻的隐含层输出:

h_{next} = {\rm LSTM}(e_x, h_{prev})

最后将 (h_{next}, e_x) 推进栈里。

如果是REDUCE,那么首先需要取出栈顶的两个元素 (h_r, g_r)(h_l, g_l) ,然后用TreeLSTM计算出两个子结点合并后的子树的表示:

g_{new} = {\rm TreeLSTM}(g_l, g_r)

接着还是计算stack-LSTM下一个时刻的隐含层输出:

h_{new} = {\rm LSTM}(g_{new}, h_{prev})

最后将 (h_{new}, g_{new}) 推进栈里。

为了防止数值溢出,常规上我们计算联合概率的对数:

\log p_{\theta}(x, z) = \sum_{t=1}^T \log p_{\theta}(x_t | x_{< t}, z_{< n(t)}) + \sum_{j=1}^{2T-1} \log p_{\theta}(z_j | x_{< m(j)}, z_{< j})

从这个式子可以看出,联合概率定义为所有给定某段单词和action预测下一个单词和给定某段单词和action预测下一个action的概率之积。

如果是监督任务比如RNNG,那么只需要最大化这个联合概率就足够了,但是现在要做无监督,没有 z ,注意别搞混了,推理网络采样出的 z 可不能用来监督哦,因为那本来就不是正确的,所以接下来要采用语言模型来作为最终的目标函数。

Variational Inference

句子 x 的对数概率定义为:

\log p_{\theta}(x) = \log \sum_{z \in {\mathcal Z}_T} {p_{\theta}(x, z)}

其中 {\mathcal Z}_T 是所有合法句法树的集合,但是这里不可能穷举所有的句法树,所以就要用到变分推理,具体的理论知识不仔细介绍了,可以去查阅变分推理相关知识,下面直接推导。

\begin{array}{l}\log {p_\theta }(x) = \log \sum\limits_{z \in {\mathcal{Z}_T}} { {p_\theta }(x,z)} \\ = \log\sum\limits_{z \in {\mathcal{Z}_T}} { {q_\phi }(z|x)\frac{ { {p_\theta }(x,z)}}{ { {q_\phi }(z|x)}}} \\ = \log { {\mathbb E}_{ {q_\phi }(z|x)}}\left[ {\frac{ { {p_\theta }(x,z)}}{ { {q_\phi }(z|x)}}} \right]\\ \ge { {\mathbb E}{ {q_\phi }(z|x)}}\left[ {\log \frac{ { {p_\theta }(x,z)}}{ { {q_\phi }(z|x)}}} \right]\end{array}

其中最后一行叫做先验 \log p_{\theta}(x) 的证据下界(ELBO),要想最大化先验,可以最大化这个ELBO,如果我们对这个ELBO变化一下形式可以得到:

\begin{array}{l}{\rm ELBO} = { {\mathbb E}_{ {q_\phi }(z|x)}}\left[ {\log \frac{ { {p_\theta }(x,z)}}{ { {q_\phi }(z|x)}}} \right]\\ = { {\mathbb E}_{ {q_\phi }(z|x)}}\left[ {\log \frac{ { {p_\theta }(z|x){p_\theta }(x)}}{ { {q_\phi }(z|x)}}} \right]\\ = { {\mathbb E}_{ {q_\phi }(z|x)}}\left[ {\log {p_\theta }(x)} \right] - { {\mathbb E}_{ {q_\phi }(z|x)}}\left[ {\log \frac{ { {q_\phi }(z|x)}}{ { {p_\theta }(z|x)}}} \right]\\ = \log {p_\theta }(x) - {\rm KL}({q_\phi }(z|x)\parallel {p_\theta }(z|x))\end{array}

所以这个ELBO和先验就相差了一个KL散度,最大化ELBO的话等价于最小化KL散度,也就是使推理网络产生句法树的概率分布和生成模型尽量接近。

但是这个ELBO还是不好算,尽管它把 \log 移到了求和符号也就是期望里面,所以转换一下形式:

{\rm ELBO} = {\mathbb E}_{q_{\phi}(z|x)}\left[ \log p_{\theta}(x,z) \right] - {\mathbb H} \left[ q_{\phi}(z|x) \right]

因为模型一共有两组参数,一个是推理网络的参数 \phi ,一个是生成网络的参数 \theta ,所以下面分别对两个参数求导。

首先对 \theta 求偏导,因为只有第一项有这个参数,所以偏导为:

\nabla_{\theta}{\rm ELBO} = {\mathbb E}_{q_{\phi}(z|x)}\left[ \nabla_{\theta} \log p_{\theta}(x,z) \right]

这个偏导可以按照概率 q_{\phi}(z|x) 采样得到:

\nabla_{\theta}{\rm ELBO} \approx \frac{1}{K}\sum_{k=1}^{K} {\nabla_{\theta} \log p_{\theta}(x,z_k)}

然后对 \phi 求偏导,因为有两项含有这个参数,分别求偏导。第二项是熵,它的值其实可以用之前的 \beta 数组算出来,算法如下:

v2-56478968a6d54d4b7beebd5bcd509895_b.jpg

然后偏导可以交给深度学习库的自动微分,就不用你自己求啦。

至于第一项的偏导可以用类似于策略梯度的方法解决:

\begin{array}{l}{\nabla _\phi }{\mathbb{E}{ {q_\phi }(z|x)}}\left[ {\log {p_\theta }(x,z)} \right]\\ = {\nabla _\phi }\sum\limits_z { {q_\phi }(z|x)\log {p_\theta }(x,z)} \\ = \sum\limits_z {\log {p_\theta }(x,z){\nabla _\phi }{q_\phi }(z|x)} \\ = \sum\limits_z { {q_\phi }(z|x)\log {p_\theta }(x,z){\nabla _\phi }\log {q_\phi }(z|x)} \\ = {\mathbb{E}_{ {q_\phi }(z|x)}}\left[ {\log {p_\theta }(x,z){\nabla _\phi }\log {q_\phi }(z|x)} \right]\\ \approx \frac{1}{K}\sum\limits_{k = 1}^K {\log {p_\theta }(x,{z_k}){\nabla_ \phi }\log {q_\phi }({z_k}|x)} \end{array}

这里最后也是转化为了采样,和策略梯度做法类似,这里加入baseline来提升性能:

\begin{array}{l}{\nabla _\phi }{\mathbb{E}_{ {q_\phi }(z|x)}}\left[ {\log {p_\theta }(x,z)} \right]\\ \approx \frac{1}{K}\sum\limits_{k = 1}^K {\log {p_\theta }(x,{z_k}){\nabla _\phi }\log {q_\phi }({z_k}|x)} \\ \approx \frac{1}{K}\sum\limits_{k = 1}^K {(\log {p_\theta }(x,{z_k}) - {r_k}){\nabla _\phi }\log {q_\phi }({z_k}|x)} \end{array}

其中 r_k 定义为所有其他的对数联合概率的均值:

r_k = \frac{1}{K-1} \sum_{j \ne k} \log p_{\theta}(x, z_j)

至此所有偏导都已求出来了,两个通过采样得到,一个通过inside算法结果自动微分得到,所以去掉导数符号并相加就得到了最终的损失函数:

{\mathcal L}(\phi, \theta) \approx \frac{1}{K} \sum_{k=1}^K {\left[ \log p_{\theta}(x, z_k) + (\log p_{\theta}(x, z_k) - r_k)\log q_{\phi}(z_k|x) \right]} - {\mathbb H}\left[ q_{\phi}(z|x) \right]

一定要注意,这里的 \log p_{\theta}(x, z_k) - r_k 在代码实现的时候不能传入梯度,不然的话对 \theta 的偏导就会多出这一项的偏导了!

实验

实验结果这里就不多说了,细节具体看论文吧,就贴两个结果,一个是语言模型:

v2-5c85cd9c66de2c8ce55515537cc2d60c_b.jpg

可以看出在标准的PTB数据集上,URNNG效果只比监督学习的RNNG和用URNNG损失函数微调后的RNNG效果略差一点,但是在大数据集上,URNNG的优势就体现出来了。

另一个是无监督成分句法分析,这里是用的全部长度的测试集:

v2-67f7844b91827ea56ddef756f9d458b6_b.jpg

这个任务上URNNG效果是最好的。

结论

和之前两篇语言模型做无监督成分句法分析类似,这篇论文用推理网络学习句法树的概率分布并采样句法树,再用生成网络计算这些句法树和句子的联合概率,最后用变分推理最大化句子的概率,也就是学习出一个好的语言模型。

这篇论文的工作还是挺令人惊叹的,融合了inside算法、RNNG、变分推理等等知识。本来我变分推理听老师讲了好几次了都云里雾里的,看了这篇论文后总算弄懂了一点了,不过所了解的还是很少,EM算法、VAE之类的高级境界根本不会。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值