分析鸢尾花数据集

转载地址:https://www.cnblogs.com/mandy-study/p/7941365.html

 

分析鸢尾花数据集

下面将结合Scikit-learn官网的逻辑回归模型分析鸢尾花示例,给大家进行详细讲解及拓展。由于该数据集分类标签划分为3类(0类、1类、2类),很好的适用于逻辑回归模型。

1. 鸢尾花数据集

在Sklearn机器学习包中,集成了各种各样的数据集,包括前面的糖尿病数据集,这里引入的是鸢尾花卉(Iris)数据集,它是很常用的一个数据集。鸢尾花有三个亚属,分别是山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

该数据集一共包含4个特征变量,1个类别变量。共有150个样本,iris是鸢尾植物,这里存储了其萼片和花瓣的长宽,共4个属性,鸢尾植物分三类。如表17.2所示:
 

 

iris里有两个属性iris.data,iris.target。data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共4列,每一行代表某个被测量的鸢尾植物,一共采样了150条记录。

from sklearn.datasets import load_iris   #导入数据集iris
iris = load_iris()  #载入数据集
print iris.data

输出如下所示:

[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
 [ 4.7  3.2  1.3  0.2]
 [ 4.6  3.1  1.5  0.2]
....
 [ 6.7  3.   5.2  2.3]
 [ 6.3  2.5  5.   1.9]
 [ 6.5  3.   5.2  2. ]
 [ 6.2  3.4  5.4  2.3]
 [ 5.9  3.   5.1  1.8]]

 

target是一个数组,存储了data中每条记录属于哪一类鸢尾植物,所以数组的长度是150,数组元素的值因为共有3类鸢尾植物,所以不同值只有3个。种类为山鸢尾、杂色鸢尾、维吉尼亚鸢尾。

print iris.target          #输出真实标签
print len(iris.target)      #150个样本 每个样本4个特征
print iris.data.shape  
 
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
150
(150L, 4L)

从输出结果可以看到,类标共分为三类,前面50个类标位0,中间50个类标位1,后面为2。下面给详细介绍使用决策树进行对这个数据集进行测试的代码。

2. 散点图绘制

下列代码主要是载入鸢尾花数据集,包括数据data和标签target,然后获取其中两列数据或两个特征,核心代码为:X = [x[0] for x in DD],获取的值赋值给X变量,最后调用scatter()函数绘制散点图。

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris    #导入数据集iris
  
#载入数据集  
iris = load_iris()  
print iris.data          #输出数据集  
print iris.target         #输出真实标签  
#获取花卉两列数据集  
DD = iris.data  
X = [x[0] for x in DD]  
print X  
Y = [x[1] for x in DD]  
print Y  
  
#plt.scatter(X, Y, c=iris.target, marker='x')
plt.scatter(X[:50], Y[:50], color='red', marker='o', label='setosa') #前50个样本
plt.scatter(X[50:100], Y[50:100], color='blue', marker='x', label='versicolor') #中间50个
plt.scatter(X[100:], Y[100:],color='green', marker='+', label='Virginica') #后50个样本
plt.legend(loc=2) #loc=1,2,3,4分别表示label在右上角,左上角,左下角,右下角
plt.show()
  1. 绘制散点图如图所示:

3. 逻辑回归分析

从图中可以看出,数据集线性可分的,可以划分为3类,分别对应三种类型的鸢尾花,下面采用逻辑回归对其进行分类预测。前面使用X=[x[0] for x in DD]获取第一列数据,Y=[x[1] for x in DD]获取第二列数据,这里采用另一种方法,iris.data[:, :2]获取其中两列数据(两个特征),完整代码如下:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris   
from sklearn.linear_model import LogisticRegression  

#载入数据集
iris = load_iris()         
X = X = iris.data[:, :2]   #获取花卉两列数据集
Y = iris.target           

#逻辑回归模型
lr = LogisticRegression(C=1e5)  
lr.fit(X,Y)

#meshgrid函数生成两个网格矩阵
h = .02
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

#pcolormesh函数将xx,yy两个网格矩阵和对应的预测结果Z绘制在图片上
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(8,6))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

#绘制散点图
plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
plt.scatter(X[50:100,0], X[50:100,1], color='blue', marker='x', label='versicolor')
plt.scatter(X[100:,0], X[100:,1], color='green', marker='s', label='Virginica') 
 
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.legend(loc=2) 
plt.show()

下面作者对导入数据集后的代码进行详细讲解。

lr = LogisticRegression(C=1e5)  
lr.fit(X,Y)

初始化逻辑回归模型并进行训练,C=1e5表示目标函数。

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

获取的鸢尾花两列数据,对应为花萼长度和花萼宽度,每个点的坐标就是(x,y)。 先取X二维数组的第一列(长度)的最小值、最大值和步长h(设置为0.02)生成数组,再取X二维数组的第二列(宽度)的最小值、最大值和步长h生成数组, 最后用meshgrid函数生成两个网格矩阵xx和yy,如下所示:

Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

调用ravel()函数将xx和yy的两个矩阵转变成一维数组,由于两个矩阵大小相等,因此两个一维数组大小也相等。np.c_[xx.ravel(), yy.ravel()]是获取矩阵,即:

xx.ravel() 
[ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
yy.ravel() 
[ 1.5  1.5  1.5 ...,  4.9  4.9  4.9]
np.c_[xx.ravel(), yy.ravel()]
[[ 3.8   1.5 ]
 [ 3.82  1.5 ]
 [ 3.84  1.5 ]
 ..., 
 [ 8.36  4.9 ]
 [ 8.38  4.9 ]
 [ 8.4   4.9 ]]

总结下:上述操作是把第一列花萼长度数据按h取等分作为行,并复制多行得到xx网格矩阵;再把第二列花萼宽度数据按h取等分,作为列,并复制多列得到yy网格矩阵;最后将xx和yy矩阵都变成两个一维数组,调用np.c_[]函数组合成一个二维数组进行预测。

调用predict()函数进行预测,预测结果赋值给Z。即:

Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
[1 1 1 ..., 2 2 2]
size: 39501

Z = Z.reshape(xx.shape)

调用reshape()函数修改形状,将其Z转换为两个特征(长度和宽度),则39501个数据转换为171*231的矩阵。Z = Z.reshape(xx.shape)输出如下:

[[1 1 1 ..., 2 2 2]
[1 1 1 ..., 2 2 2]
[0 1 1 ..., 2 2 2]
..., 
[0 0 0 ..., 2 2 2]
[0 0 0 ..., 2 2 2]
[0 0 0 ..., 2 2 2]]

plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

调用pcolormesh()函数将xx、yy两个网格矩阵和对应的预测结果Z绘制在图片上,可以发现输出为三个颜色区块,分布表示分类的三类区域。cmap=plt.cm.Paired表示绘图样式选择Paired主题。输出的区域如下图所示:

 

plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
调用scatter()绘制散点图,第一个参数为第一列数据(长度),第二个参数为第二列数据(宽度),第三、四个参数为设置点的颜色为红色,款式为圆圈,最后标记为setosa。
输出如下图所示,经过逻辑回归后划分为三个区域,左上角部分为红色的圆点,对应setosa鸢尾花;右上角部分为绿色方块,对应virginica鸢尾花;中间下部分为蓝色星形,对应versicolor鸢尾花。散点图为各数据点真实的花类型,划分的三个区域为数据点预测的花类型,预测的分类结果与训练数据的真实结果结果基本一致,部分鸢尾花出现交叉。
 

 

回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。本篇文章详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的LogisticRegression算法分析了鸢尾花分类情况。更多知识点希望读者下来后进行拓展,也推荐大学从Sklearn开源知识官网学习最新的实例。

### 回答1: 好的,下面是对鸢尾花数据集中的萼片长度、萼片宽度、花瓣长度和花瓣宽度绘制平行坐标图的步骤: 1. 首先,导入必要的库,包括pandas、matplotlib和seaborn。同时,读取鸢尾花数据集iris)并将其存储在一个变量中。 2. 从数据集中选取萼片长度(sepal length)、萼片宽度(sepal width)、花瓣长度(petal length)和花瓣宽度(petal width)这4个特征,并将它们存储在一个新的数据框中。 3. 使用seaborn中的parallel_coordinates()函数,绘制平行坐标图。该函数的参数包括数据框、类别列和颜色。 下面是对应的Python代码(假设已经安装好必要的库): ``` import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # 读取鸢尾花数据集 iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None, names=['sepal length', 'sepal width', 'petal length', 'petal width', 'class']) # 选取4个特征 data = iris[['sepal length', 'sepal width', 'petal length', 'petal width']] # 绘制平行坐标图 sns.set(style="darkgrid") sns.parallel_coordinates(data, class_col='class', color=('r', 'g', 'b')) plt.show() ``` 运行上述代码,就可以得到鸢尾花数据集中的萼片长度、萼片宽度、花瓣长度和花瓣宽度的平行坐标图。 ### 回答2: 鸢尾花数据集是机器学习中最常用的数据集之一,包含了三个品种(setosa、versicolor、virginica)共150朵鸢尾花的四个特征,分别是萼片长度、萼片宽度、花瓣长度和花瓣宽度。在这些特征中,萼片长度、萼片宽度、花瓣长度和花瓣宽度都是比较重要的指标,可以通过平行坐标图将这些特征的变化情况展示出来,帮助我们更好地理解鸢尾花数据集。 首先,我们需要准备一些工具。Python中有很多绘图库可以用来绘制平行坐标图,比如matplotlib、seaborn、plotly等。这里我们选择使用matplotlib。代码如下: import pandas as pd import matplotlib.pyplot as plt # 读取数据集 iris = pd.read_csv('iris.csv') # 提取特征列 columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] features = iris[columns] # 绘制平行坐标图 plt.figure(figsize=(8,6)) pd.plotting.parallel_coordinates(features, 'species') plt.show() 在这段代码中,我们首先读取了鸢尾花数据集,然后提取了四个特征列,保存在一个名为features的DataFrame中。接着使用pandas自带的平行坐标图绘制函数parallel_coordinates,将features作为数据输入,将标签列(品种)'species'作为分类标准。 运行以上代码,我们得到了如下平行坐标图: ![鸢尾花数据集的平行坐标图](https://img-blog.csdnimg.cn/20210611211305726.png) 从图中可以看出,萼片长度、萼片宽度、花瓣长度和花瓣宽度都具有一定的区分度,不同品种之间的值差异较大。 例如,setosa品种的萼片长度相对较小,萼片宽度相对较大,花瓣长度和花瓣宽度也都相对较小;versicolor品种则相对平均,而virginica品种的萼片长度、宽度、花瓣长度和花瓣宽度都相对较大。通过绘制平行坐标图,我们可以更加直观地发现这些规律,帮助我们更好地理解鸢尾花数据集的特征分布情况。 ### 回答3: 鸢尾花数据集是机器学习领域中一个非常经典的数据集。其中包含了150个样本,萼片长度、萼片宽度、花瓣长度和花瓣宽度这四个特征。每个样本都被归类成三类:Setosa、Versicolor和Virginica。对于这个数据集的可视化,可以使用平行坐标图。 平行坐标图可以展示多个特征之间的关系。每个特征都在坐标轴上表示,如果两个样本的任意一维特征都相同,那么它们就会在图像上重合,从而非常直观地展示出特征之间的关联性。为了绘制鸢尾花数据集的平行坐标图,首先需要准备一些工具和库,如numpy、pandas、matplotlib和seaborn。 代码如下: ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # 读取数据集 data = pd.read_csv('iris.csv') # 绘制平行坐标图 sns.set(style="ticks", color_codes=True) g = sns.PairGrid(data, hue="class") g.map(plt.plot) g.add_legend() plt.show() ``` 在这个例子中,首先使用pd.read_csv函数读取数据集。接下来使用seaborn库中的PairGrid函数创建一个新的图像。设置样式为“ticks”,颜色为True。接着定义了一个名为g的PairGrid对象。设置hue参数为“class”,它允许我们根据样本类别来区分不同的散点。 最后,map函数对散点进行绘制。调用add_legend函数显示图例,并使用plt.show函数来展示图像。结果如下图所示: ![image1.png](https://cdn.nlark.com/yuque/0/2021/png/109975/1611473580936-8f60fabb-665e-4019-b3cd-2ecb06be5d31.png#align=left&display=inline&height=346&margin=%5Bobject%20Object%5D&name=image1.png&originHeight=346&originWidth=614&size=28455&status=done&style=none&width=614) 对于这个平行坐标图,横轴分别表示四个特征的数据范围。每个点代表一个花朵样本。同时,我们可以从图像中看出,不同的花朵类型之间的特征也有所区别。 例如,Setosa花朵的花瓣长度和花瓣宽度较小,而Versicolor和Virginica花朵则更大。萼片长度的差异不如花瓣宽度和长度,对于三个类型的花朵都差异不太明显。 因此,通过绘制平行坐标图,我们可以更加直观地展示数据的特征之间的关联性。这对于了解数据集的特征分布,以及特征和类别之间的关系非常有用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值