Could not load library cudnn_cnn_infer64_8.dll. Error code 126

Could not load library cudnn_cnn_infer64_8.dll. Error code 126

解决Could not load library cudnn_cnn_infer64_8.dll. Error code 126的问题

“Could not load library cudnn_cnn_infer64_8.dll. Error code 126 ” 主要是由于缺少相关的依赖,导致CUDA无法正常调用,因此出现的问题。目前有些文章搜索结果显示,要求卸载cuDNN v8.3 安装成 v8.2显然过于麻烦,其实只需要阅读官方文档就能知道是因为自己安装cuDNN少了一步骤,导致相关的依赖不存在。

解决方案

本人:Cuda version: 11.5 cuDNN version: 8.3
进入官网链接:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-zlib-windows
在这里插入图片描述搜索zlib,根据自己的平台,linux or windows下载相关的ZLIB DLL文件,然后将文件夹解压在某个路径下。
本人路径 :D:\SoftwareData\SomeDLLforCUDA\dll_x64
在这里插入图片描述
接下来根据官网指示,我们需要将解压的dll_x64路径添加到环境的Path之中,搜索环境变量
在这里插入图片描述

在这里插入图片描述

接下来重启计算机,再次运行相关的代码,问题就可以解决啦。

<think>好的,我现在需要帮助用户解决cuDNN加载失败的问题,特别是关于cudnn_cnn_infer64_8.dll缺失或不兼容的情况。用户提到错误信息是“Loaded cuDNN version 8400 cudnn_cnn_infer64_8.dll missing or incompatible”,所以我要先分析可能的原因和解决方案。 首先,用户可能已经安装了不同版本的cuDNN,或者版本不匹配导致的问题。cuDNN的版本需要与CUDA工具包版本完全兼容,这一点很关键。例如,如果用户使用的是CUDA 11.x,可能需要特定版本的cuDNN,比如8.4.0。我需要检查用户是否下载了正确的cuDNN版本,并确认安装路径是否正确。 接下来,用户可能没有正确放置DLL文件。根据引用[2]和引用[3],正确的路径通常是CUDA的bin目录,比如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin。如果用户将DLL文件放到了错误的目录下,或者没有覆盖所有必要的文件,就会导致加载失败。需要指导用户检查安装路径,并确保所有cuDNN的文件都复制到了正确的位置。 另外,环境变量的问题也可能导致系统找不到DLL。虽然通常cuDNN的路径会被添加到系统路径中,但如果用户手动安装或移动了文件,可能需要手动设置环境变量。需要提醒用户检查PATH变量是否包含CUDA和cuDNN的bin目录。 还有可能是文件损坏或下载不完整。建议用户重新下载cuDNN库,尤其是从官方渠道获取,确保文件完整性。同时,用户可能需要以管理员权限进行文件复制,避免权限问题导致文件无法正确写入。 最后,用户提到的Spyder无法正常运行的问题,可能与环境配置有关。可能需要建议用户使用命令行或不同的IDE来测试,或者检查Spyder的环境变量设置是否正确。 综合这些可能性,我需要一步步引导用户检查版本兼容性、安装路径、环境变量,并确保文件正确无误。此外,提供相关的问题可以帮助用户进一步排查其他潜在问题。</think>### 解决cuDNN加载失败问题:cudnn_cnn_infer64_8.dll缺失或不兼容 #### 1. **确认版本兼容性** cuDNN的版本需与CUDA工具包版本严格匹配。例如: - **CUDA 11.x** 通常对应 **cuDNN 8.4.0** 或相近版本[^3]。 - 若已安装的cuDNN版本(如8400)与CUDA版本不兼容,需从[NVIDIA cuDNN官网](https://developer.nvidia.com/cudnn)重新下载对应版本。 #### 2. **手动修复DLL文件缺失** - **步骤1**:从可信来源(如[NVIDIA官网](https://developer.nvidia.com/cudnn)或DLL库)下载缺失的`cudnn_cnn_infer64_8.dll`文件。 - **步骤2**:将文件复制到以下目录(根据CUDA安装路径调整): ```bash C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin # 若CUDA版本为11.6 C:\Program Files\NVIDIA GPU Computing Toolkit\cudnn\bin # 部分自定义安装路径 ``` - **步骤3**:重启Python环境或IDE(如Jupyter、PyCharm)。 #### 3. **验证cuDNN安装** 在Python中运行以下代码检查cuDNN是否加载成功: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) # 确认GPU是否可见 print(tf.__version__) # 检查TensorFlow版本是否支持当前CUDA/cuDNN ``` #### 4. **环境变量配置** 确保系统环境变量`PATH`包含CUDA和cuDNN的路径: - 添加路径(示例): ```bash C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin C:\Program Files\NVIDIA GPU Computing Toolkit\cudnn\bin ``` #### 5. **其他常见问题** - **权限问题**:以管理员身份运行命令行或IDE,避免文件写入失败。 - **文件损坏**:重新下载cuDNN并校验文件哈希值[^2]。 - **IDE兼容性**:若Spyder无法加载,尝试在命令行或Jupyter中运行。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值