1、
组合问题:给一系列找和为target
给定的数字有没有范围(例如1-9,还是正整数,还是有0/负数的情况)
给定的数字取值有没有要求(能不能重复取,还是限制了取数的个数(只能取5个))
本题:本题是 集合里元素可以用无数次,那么和组合问题的差别 其实仅在于 startIndex上的控制
注意:⚠️
本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?
我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:77.组合 (opens new window),216.组合总和III (opens new window)。
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:17.电话号码的字母组合(opens new window)
注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路,后面我在讲解排列的时候会重点介绍。
1)Determining Recursive Function Arguments
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex)
2)Determination of termination conditions
if (sum > target) {
return;
}
if (sum == target) {
result.push_back(path);
return;
}
3)single-level search process
for (int i = startIndex; i < candidates.size(); i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数
sum -= candidates[i]; // 回溯
path.pop_back(); // 回溯
}
class Solution(object):
def combinationSum(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
result = []
self.backtracking(candidates, target, 0, 0, [], result)
return result
def backtracking(self, candidates, target, total, startIndex, path, result):
if total > target:
return
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result)
total -= candidates[i]
path.pop()# 这里又可以用pop
2、
candidates有重复元素+结果里不能有重复元素
深度上可以,广度上需要去重
class Solution(object):
def combinationSum2(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
# Sort the candidates.
candidates.sort()
result = []
self.backtracking(candidates, target, 0,0, [], result)
return result
def backtracking(self, candidates, target, total, startIndex, path, result):
#if total > target:
# return
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
# Remove duplicates
#if (candidates[startIndex] == candidates[startIndex-1]):
# continue
if i > startIndex and candidates[i] == candidates[i - 1]:
continue
if total + candidates[i] > target:
break
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result)
total -= candidates[i]
path.pop()
-
if i > startIndex and candidates[i] == candidates[i - 1]: continue
:- 此条件检查当前候选值是否等于前一个候选值 (candidates[i] == Candidates[i - 1]) 以及当前候选值是否不是当前分支中的第一个候选值 (i > startIndex)。
- 如果两个条件都满足,则意味着我们已经在该分支的前面考虑了具有相同值的组合,并且我们应该跳过该候选值以避免结果重复。
- 此条件有助于消除结果中的重复组合。如果没有它,结果中可能会出现多个相同的组合。
-
if total + candidates[i] > target: break
:- 此条件检查将当前候选值添加到 中是否
total
会超过目标值。 - 如果添加当前候选会使
total
超出目标,则继续探索的这个分支是没有意义的,因为可以保证总和无法达到目标。 - 通过在满足此条件时尽早退出循环,可以节省不必要的计算并提高算法的效率。
- 此条件检查将当前候选值添加到 中是否
3、
我列出如下几个难点:
- 切割问题可以抽象为组合问题
- 如何模拟那些切割线
- 切割问题中递归如何终止
- 在递归循环中如何截取子串
- 如何判断回文
1)Determining Recursive Function Arguments
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
2)Determination of termination conditions
从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。
那么在代码里什么是切割线呢?
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
}
3)single-level search process
[startIndex, i] 就是要截取的子串
首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path
中,path用来记录切割过的回文子串。
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 如果不是则直接跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经添加的子串
}
注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1。
class Solution(object):
def partition(self, s):
"""
:type s: str
:rtype: List[List[str]]
"""
result = []
self.backtracking(s, 0, [], result)
return result
def backtracking(self, s, startIndex, path, result):
# Base Case
if startIndex == len(s):
result.append(path[:])
return
# single recursion logic
for i in range(startIndex, len(s)):
# 此次比其他组合题目多了一步判断:
# 判断被截取的这一段子串([start_index, i])是否为回文串
if self.is_palindrome(s, startIndex, i):
path.append(s[startIndex: i+1])
self.backtracking(s, i+1, path, result)
path.pop()
def is_palindrome(self, s, start, end):
i = start
j = end
while i < j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True