欧拉回路的问题用程序语言来描述就是能否从一个无向图中的一个节点出发走出一条道路,每条边恰好经过一次。
不难发现在欧拉道路中,进和出是相对应的概念。除了终点和起点,其他的度数应该也是偶数。即终点和起点的度为奇数时,该无向图存在欧拉道路,且道路为从一个奇点出发到达另一个奇点,如果不存在奇点,则可以从任意点出发,最终一定会回到该点(称为欧拉回路) 。有向图的结论类似,最多只能有两个点的入度不等于出度,而且其中一个点的出度比入度大1(起点),另一个点的入度比出度大1(终点)。
下面来总结一下欧拉回路:
1.要保证图在忽略方向后是联通的
用dfs或者并查集实现
2.有关度数的关系
最多有两个奇点,其余全为偶点。
或者全为偶点。
代码较为简单
1.有向图
void euler(int u)
{
vis[u]=1;
for(int v=0;v<n;v++)
{
if(G[u][v]&&!vis[v])
euler(v);
}
}
2.
无向图
void euler(int u)
{
for(int v=0;v<n;v++)
{
if(G[u][v]&&!vis[u][v])
vis[u][v]=vis[v][u]=1;
euler(v);
printf("%d %d",u,v);
}
}