二次同余和高次同余的几个命题

命题一:设 p p p是奇素数, p ∤ a p\nmid a pa。存在正整数 u , v , ( u , v ) = 1 u,v,(u,v)=1 u,v,(u,v)=1,使得 u 2 + v 2 ≡ 0 ( m o d    p ) u^2+v^2\equiv 0(mod\;p) u2+v20(modp)的充要条件是 − a -a a是模 p p p的二次剩余。
(选自《信息安全数学基础(第二版)第4章习题》)

证 明 : ( 1 ) 充 分 性 : 因 为 − a 是 模 p 的 二 次 剩 余 , 所 以 同 余 方 程 x 2 ≡ − a ( m o d    p ) 有 解 , 记 为 x 0 。 所 以 存 在 正 整 数 u = x 0 , v = 1 , ( u , v ) = 1 , 使 得 u 2 + a v 2 ≡ 0 ( m o d    p ) 。 ( 2 ) 必 要 性 : 因 为 u 2 + a 2 ≡ 0 ( m o d    p ) , 所 以 存 在 k 满 足 k p = a v 2 + u 2 , 又 因 为 p , v , u 均 不 为 0 , 所 以 ( k p , v 2 ) = ( v 2 , u 2 ) = 1 ⇒ ( p , v ) = 1 。 所 以 存 在 正 整 数 v ′ 使 得 v v ′ ≡ 1 ( m o d    p ) 上 式 两 边 同 乘 v ′ 2 , 得 u 2 v ′ 2 + a v 2 v ′ 2 ≡ ( u v ′ ) 2 + a ≡ 0 ( m o d    p ) 。 所 以 同 余 方 程 x 2 ≡ − a ( m o d    p ) 有 解 , 解 为 u v ′ 。 证明:\\ (1)充分性:因为-a是模p的二次剩余,\\ 所以同余方程x^2\equiv -a(mod\;p)有解,记为x_0。\\ 所以存在正整数u=x_0,v=1,(u,v)=1,使得u^2+av^2\equiv 0(mod\;p)。\\ (2)必要性:因为u^2+a^2\equiv 0(mod\;p),\\ 所以存在k满足kp=av^2+u^2,又因为p,v,u均不为0,\\ 所以(kp,v^2)=(v^2,u^2)=1\Rightarrow(p,v)=1。\\ 所以存在正整数v'使得vv'\equiv1(mod\;p)\\ 上式两边同乘v'^2,得u^2v'^2+av^2v'^2\equiv(uv')^2+a\equiv0(mod\;p)。\\ 所以同余方程x^2\equiv-a(mod\;p)有解,解为uv'。 1apx2a(modp)x0u=x0v=1(u,v)=1使u2+av20(modp)2u2+a20(modp)kkp=av2+u2pvu0(kp,v2)=(v2,u2)=1(p,v)=1v使vv1(modp)v2u2v2+av2v2(uv)2+a0(modp)x2a(modp)uv

命题二:设素数 p > 2 p>2 p>2 x 4 ≡ − 4 ( m o d    p ) x^4\equiv-4(mod\;p) x44(modp)有解的充要条件是 p ≡ 1 ( m o d    4 ) p\equiv1(mod\;4) p1(mod4)
(选自《信息安全数学基础(第二版)第4章习题》)

证 明 : ( 1 ) 必 要 性 : 因 为 x 4 ≡ − 4 ( m o d    p ) 有 解 , 所 以 x 2 ≡ − 4 ( m o d    p ) 有 解 。 所 以 ( − 4 p ) = 1 。 因 为 ( − 4 p ) = ( − 1 p ) ( 2 2 p ) = ( − 1 ) p − 1 2 = 1 。 所 以 存 在 k ∈ Z , 使 得 p − 1 2 = 2 k ⇒ p = 4 k + 1 。 所 以 p ≡ 1 ( m o d    4 ) 。 ( 2 ) 充 分 性 : 因 为 p ≡ 1 ( m o d    4 ) , 所 以 存 在 k ∈ Z , 使 p = 4 k + 1 。 所 以 ( − 1 p ) = ( − 1 ) p − 1 2 = ( − 1 ) 2 k = 1 , 则 x 2 ≡ − 1 ( m o d    p ) 有 解 , 记 为 x 0 + 1 。 所 以 ( x 0 + 1 ) 2 ≡ − 1 ( m o d    p ) , 即 x 0 2 ≡ − 2 ( x 0 + 1 ) ( m d    p ) 。 上 式 两 边 同 时 平 方 , 得 x 0 4 ≡ 4 ( x 0 + 1 ) 2 ≡ − 4 ( m o d    p ) 。 所 以 同 余 方 程 x 4 ≡ − 4 ( m o d    p ) 有 解 , 解 为 x 0 。 证明:\\ (1)必要性:因为x^4\equiv-4(mod\;p)有解,所以x^2\equiv-4(mod\;p)有解。\\ 所以(\frac{-4}{p})=1。\\ 因为(\frac{-4}{p})=(\frac{-1}{p})(\frac{2^2}{p})=(-1)^{\frac{p-1}{2}}=1。\\ 所以存在k\in \mathbb{Z},使得\frac{p-1}{2}=2k\Rightarrow p=4k+1。\\ 所以p\equiv1(mod\;4)。\\ (2)充分性:因为p\equiv1(mod\;4),所以存在k\in \mathbb{Z},使p=4k+1。\\ 所以(\frac{-1}{p})=(-1)^{\frac{p-1}{2}}=(-1)^{2k}=1,则x^2\equiv -1(mod\;p)有解,记为x_0+1。\\ 所以(x_0+1)^2\equiv-1(mod\;p),即x_0^2\equiv-2(x_0+1)(md\;p)。 上式两边同时平方,得x_0^4\equiv4(x_0+1)^2\equiv-4(mod\;p)。\\ 所以同余方程x^4\equiv-4(mod\;p)有解,解为x_0。 1x44(modp)x24(modp)(p4)=1(p4)=(p1)(p22)=(1)2p1=1kZ使2p1=2kp=4k+1p1(mod4)2p1(mod4)kZ使p=4k+1(p1)=(1)2p1=(1)2k=1x21(modp)x0+1(x0+1)21(modp)x022(x0+1)(mdp)x044(x0+1)24(modp)x44(modp)x0

命题三:对任意素数 p p p,必有整数 a , b , c , d a,b,c,d a,b,c,d使得

x 4 + 1 ≡ ( x 2 + a x + b ) ( x 2 + c x + d ) ( m o d    p ) x^4+1\equiv(x^2+ax+b)(x^2+cx+d)(mod\;p) x4+1(x2+ax+b)(x2+cx+d)(modp)

(选自《信息安全数学基础(第二版)第4章习题》)

证 明 : 先 考 虑 给 定 一 个 素 数 p , x 0 取 遍 整 数 集 中 的 所 有 值 。 ( 1 ) 当 p ∤ x 0 时 , 取 b = c = d = 0 , 则 ( x 0 2 + a x 0 + b ) ( x 0 2 + c x 0 + d ) = x 0 4 + ( a + c ) x 0 3 + ( a c + b + d ) x 0 2 + ( a d + b c ) x 0 + b d = x 0 4 + a x 0 3 . 令 y 0 = x 0 3 。 因 为 p 为 素 数 , 又 p ∤ x 0 , 所 以 ( p , x 0 ) = 1 ⇒ ( p , y 0 ) = 1 。 所 以 存 在 正 整 数 y 0 ′ , 使 得 y 0 ′ y 0 ≡ 1 ( m o d    p ) 。 取 a = y 0 ′ , 则 ( x 0 2 + a x 0 + b ) ( x 0 2 + c x 0 + d ) ≡ ( x 0 4 + 1 ) ( m o d    p ) 。 ( 2 ) 当 p ∣ x 0 时 , 有 ( x 0 2 + a x 0 + b ) ( x 0 2 + c x 0 + d ) = x 0 4 + ( a + c ) x 0 3 + ( a c + b + d ) x 0 2 + ( a d + b c ) x 0 + b d ≡ ( x 0 4 + b d ) ( m o d    p ) . 令 b = d = 1 , 则 ( x 0 2 + a x 0 + b ) ( x 0 2 + c x 0 + d ) ≡ ( x 0 4 + 1 ) ( m o d    p ) 。 再 将 p 一 般 化 , 那 么 : 对 任 意 素 数 p , 必 有 整 数 a , b , c , d 使 得 x 4 + 1 ≡ ( x 2 + a x + b ) ( x 2 + c x + d ) ( m o d    p ) 证明: 先考虑给定一个素数p,x_0取遍整数集中的所有值。\\ (1)当p\nmid x_0时,取b=c=d=0,则\\ \begin{aligned} &(x_0^2+ax_0+b)(x_0^2+cx_0+d)\\ =&x_0^4+(a+c)x_0^3+(ac+b+d)x_0^2+(ad+bc)x_0+bd\\ =&x_0^4+ax_0^3.\\ \end{aligned}\\ 令y_0=x_0^3。因为p为素数,又p\nmid x_0,所以(p,x_0)=1\Rightarrow(p,y_0)=1。\\ 所以存在正整数y_0',使得y_0'y_0\equiv1(mod\;p)。\\ 取a=y_0',则(x_0^2+ax_0+b)(x_0^2+cx_0+d)\equiv (x_0^4+1)(mod\;p)。\\ (2)当p\mid x_0时,有\\ \begin{aligned} &(x_0^2+ax_0+b)(x_0^2+cx_0+d)\\ =&x_0^4+(a+c)x_0^3+(ac+b+d)x_0^2+(ad+bc)x_0+bd\\ \equiv&(x_0^4+bd)(mod\;p).\\ \end{aligned}\\ 令b=d=1,则(x_0^2+ax_0+b)(x_0^2+cx_0+d)\equiv (x_0^4+1)(mod\;p)。\\ 再将p一般化,那么:\\ 对任意素数p,必有整数a,b,c,d使得x^4+1\equiv(x^2+ax+b)(x^2+cx+d)(mod\;p) px01px0b=c=d=0==(x02+ax0+b)(x02+cx0+d)x04+(a+c)x03+(ac+b+d)x02+(ad+bc)x0+bdx04+ax03.y0=x03ppx0(p,x0)=1(p,y0)=1y0使y0y01(modp)a=y0(x02+ax0+b)(x02+cx0+d)(x04+1)(modp)2px0=(x02+ax0+b)(x02+cx0+d)x04+(a+c)x03+(ac+b+d)x02+(ad+bc)x0+bd(x04+bd)(modp).b=d=1(x02+ax0+b)(x02+cx0+d)(x04+1)(modp)ppa,b,c,d使x4+1(x2+ax+b)(x2+cx+d)(modp)

命题四:对任意素数 p p p,同余式

( x 2 − 2 ) ( x 2 − 17 ) ( x 2 − 34 ) ≡ 0 ( m o d    p ) (x^2-2)(x^2-17)(x^2-34)\equiv0(mod\;p) (x22)(x217)(x234)0(modp)

有解。
(选自《信息安全数学基础(第二版)第4章习题》)

证 明 : ( 1 ) 若 p = 2 或 p = 17 , 则 x ≡ 0 ( m o d    p ) 为 该 同 余 方 程 的 一 个 解 。 ( 2 ) 否 则 , 因 为 p 为 奇 素 数 , 所 以 ( 34 p ) = ( 2 p ) ( 17 p ) 。 因 为 p 不 整 除 2 , 17 与 34 , 所 以 ( 34 p ) , ( 2 p ) , ( 17 p ) 的 取 值 范 围 为 − 1 , 1 。 所 以 ( 34 p ) , ( 2 p ) , ( 17 p ) 中 至 少 有 一 项 为 1 。 若 ( 2 p ) = 1 , 则 x 2 ≡ 2 ( m o d    p ) 有 解 , 即 x 2 − 2 ≡ 0 ( m o d    p ) 有 解 。 所 以 ( x 2 − 2 ) ( x 2 − 17 ) ( x 2 − 34 ) ≡ 0 ( m o d    p ) 有 解 。 同 理 , 若 ( 17 p ) = 1 或 ( 34 p ) = 1 , 都 可 推 出 ( x 2 − 2 ) ( x 2 − 17 ) ( x 2 − 34 ) ≡ 0 ( m o d    p ) 有 解 。 综 上 , 对 任 意 素 数 p , 同 余 式 ( x 2 − 2 ) ( x 2 − 17 ) ( x 2 − 34 ) ≡ 0 ( m o d    p ) 有 解 。 证明:\\ (1)若p=2或p=17,则x\equiv0(mod\;p)为该同余方程的一个解。\\ (2)否则,因为p为奇素数,所以(\frac{34}{p})=(\frac{2}{p})(\frac{17}{p})。\\ 因为p不整除2,17与34,所以(\frac{34}{p}),(\frac{2}{p}),(\frac{17}{p})的取值范围为{-1,1}。\\ 所以(\frac{34}{p}),(\frac{2}{p}),(\frac{17}{p})中至少有一项为1。\\ 若(\frac{2}{p})=1,则x^2\equiv2(mod\;p)有解,即x^2-2\equiv0(mod\;p)有解。\\ 所以(x^2-2)(x^2-17)(x^2-34)\equiv0(mod\;p)有解。\\ 同理,若(\frac{17}{p})=1或(\frac{34}{p})=1,都可推出(x^2-2)(x^2-17)(x^2-34)\equiv0(mod\;p)有解。\\ 综上,对任意素数p,同余式(x^2-2)(x^2-17)(x^2-34)\equiv0(mod\;p)有解。 1p=2p=17x0(modp)2p(p34)=(p2)(p17)p21734(p34)(p2)(p17)1,1(p34)(p2)(p17)1(p2)=1x22(modp)x220(modp)(x22)(x217)(x234)0(modp)(p17)=1(p34)=1(x22)(x217)(x234)0(modp)p(x22)(x217)(x234)0(modp)

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值