关于(最小二乘)平差的思考与困惑

写这篇博文的初衷是想对平差有个更清晰的认识。

1、平差解决的是一个什么样的问题?到底是存在无穷多组解的时候寻找一个最优解;还是在无解的情况下得到一组满足一定条件的"合适的解"?

一、对矩阵的逆的理解

平差与矩阵密不可分,首先看对矩阵的逆的理解:


不够严密不太成熟存在错误的思考(2021-12-26,不必看)
下面记录一下笔者从线性方程组的角度对矩阵的逆的理解:
比如现在有n个未知数,有n个方程,这个n个方程相互独立(其中任意一个方程都不可以被其他方程或其他方程的组合来线性表示),那么根据这n个方程就可以求出唯一一组解(这个时候有线性方程组提取出来的系数矩阵是一个满秩的方阵)。但是现在情况发生了变化,还是有n个未知参数,n个方程,但是这n个方程中有d个方程可以有其他方程组线性表示,这时候根据线性方程组提取出的系数矩阵虽然是n行n列的方阵,但是它是行秩亏的,秩亏数为d,这时候实际发挥作用的方程数目只有n-d个。用n-d个约束条件去约束n个未知参数,那么是不能够得到唯一一组解的!好,现在条件又变了,我有n+s个方程,但是只有n个未知参数,并且这n+s个方程都是线性无关的,这个时候可以根据线性方程组提取出系数矩阵,这个系数矩阵就不再是方阵了,而是一个(n+s)*n的非方阵,虽然它行列都满秩。为了使系数矩阵成为一个方阵,这时候在后面又加上s个“虚拟”未知参数,只不过在所有n+s个方程中,虚拟未知参数的系数都是0。显而易见,由此线性方程组得到的系数矩阵是一个n+s阶方阵,但是它是列秩亏的,秩亏数是s。这时候用n+s个约束条件去约束n个参数,当然不可能得到一个结果,使得它可以满足所有这n+s个约束条件的限制,这就有点“捉襟见肘,拆东墙补西墙”的意味了。

上面思考的总结:关于线性方程组,提取它的系数矩阵,如果需要的话,将其系数矩阵补充为方阵
若系数阵为满秩方阵,有唯一解
若系数阵行秩亏(列秩 > 行秩),有无穷多组解
若有效方程数多于未知参数参数个数(列秩亏,列秩 < 行秩),无解

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。矩阵的行秩和矩阵的列秩以及矩阵的秩都是相等的。所以上面的讨论是一派胡言!


关于线性方程组的解的情况,《线性代数》中已经有了明确的说明:

假定对于一个含有n个未知数m个方程的非齐次线性方程组而言,若n<=m,
则有
1)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解;
2)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解;
3)当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解。
在这里插入图片描述
可参看:https://www.zhihu.com/question/25099162

对于n个未知数的线性方程组,最多可以列出n个线性无关且相容的方程!(这句话应该是对的吧)当存在n个线性无关且相容的方程来约束这n个未知数,那么就存在唯一解;当存在小于n个线性无关且相容或者存在n个相容但部分线性相关(一些方程可以用其他方程的线性组合来表示)的方程来约束这n个未知数,那么存在无穷多组解;当存在不相容方程来约束这n个未知数,那么无解。


二、对平差的理解

水准网平差的例子:https://blog.csdn.net/Gou_Hailong/article/details/108185283

1、对最小二乘平差的几何解释

源自:https://zhuanlan.zhihu.com/p/38128785
大佬的解释让我折服了:最小二乘法的几何意义是高维空间中的一个向量在低维子空间的投影。这里做下摘抄:




2、无解情况下寻求一种比较合适的解

水准网平差的例子:https://blog.csdn.net/Gou_Hailong/article/details/108185283

看了之前写的水准网平差的例子,例子中有23个未知参数,有40个观测方程。一般而言,肯定会存在不相容方程,这就导致了无解的情况。所以平差就是解决这样的无解的问题(和上面的对平差的几何理解相符),解决思路就是:寻得一组解,使得观测值改正数或者待估参数满足一定的条件,比如

  • 观测值改正数的加权平方和最小:最小二乘估计
  • 待估参数估计误差的方差最小:最小方差估计
  • 待估参数的均方误差最小:线性最小方差估计

使用一些限制条件得到的结果就是相应的平差结果。

3、无穷多组解的情况下寻求一种最优解

还是上面水准网平差的例子,例子中有23个未知参数,进行了40次观测。根据“测不准”原理,观测总是存在误差的,每一次观测对应一个观测真误差,所以就有40个真误差未知。如果把观测真误差也当作参数进行估计的话,就会有63个待求参数,但是只有40个约束方程。约束方程个数小于未知数个数,存在无穷多组解!所以平差是一个在无穷多组解中寻求一种最优解的问题!这和上面的平差的几何解释不是相矛盾吗?其实不然,上面没有考虑点坐标的真误差,你凭什么知道点就在那里,点的坐标就是(0,2)?如果考虑点的量测误差的话,就变成这种情况了!

三、平差的基准

基准在词典中的意思是:在测量工作中用作起始尺度的标准。它给我的感觉就是所用的直尺的0刻度,直角坐标系的零点。

网类型概念所需基准数
水准网观测量是高差,代求量是各点高程值一点的高程值,d=1
测边网观测量是边长,代求量是各点平面坐标一个点的平面坐标+边的方位角,d=3
测角网观测量是角度,代求量是各点平面坐标两个点的平面坐标,d=4
边角网观测量是边长+角度,代求量是各点的平面坐标一个点的平面坐标+边的方位角,d=3
GPS网观测量是边长+角度,代求量是各点的三维坐标一个点的三维坐标,d=3

注:在考虑基准数的时候,可以想一下:在一个三角形中,我通过已知几个量可否推出我的待求量;GPS网可以简单看作是三维水准网!边角网又叫导线网。

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值