常数变易法的“前世今生”

本文介绍了常数变易法的来源和本质,该方法源于拉格朗日的研究,主要用于解一阶非齐次线性微分方程。通过对比正常求解步骤与常数变易法的运用,阐述了这种方法的思路和有效性。常数变易法并非无根无据,而是为了解决高阶线性微分方程提供了便利。博客作者指出,虽然在低阶方程中可能显得多余,但在高阶问题上其优势明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常数变易法思想的来源或本质是什么?https://www.zhihu.com/question/31329122
“常数变易法”有效的原理:https://blog.csdn.net/w573719227/article/details/83050039
常数变易法的解释https://www.cnblogs.com/lookof/archive/2009/01/06/1370065.html

一、简介

百度百科中关于常数变易法有这么一句话

常数变易法是解线性微分方程行之有效的一种方法。它是拉格朗日十一年的研究成果,我们所用仅是他的结论,并无过程。

我们使用的常数变易法是拉格朗日大佬(1736~1813)11年的研究成果,怎么来的,拉格朗日大佬好像没有笔记存留,常数变易法的思路可能是后人逆推出来的。

笔者是在学习微分方程的时候,对“一阶非齐次线性微分方程解的结构”中所使用的常数变易法存在些许疑问,一路追查,读了上面的文章,才大致搞清楚常数变易法的来历。下面从一阶非齐次线性微分方程的求解出发,慢慢将常数变易法给呈现出来。

二、常数变易法的由来

1、一阶非齐次线性微分方程的正常求解

这一小节的目的是在不使用所谓的“常数变易法”的情况下,求解一阶非齐次线性微分方程。

首先,什么是一阶非齐次线性微分方程,什么是一阶齐次线性微分方程?齐次求解起来比较简单,我们可以先从齐次入手,然后寻找规律,最后搞定非齐次。

好,对于一阶齐次线性微分方程,我们已经求解出来了。求解微分方程,最重要的就是分离变量,分离变量之后进行积分,即可求解成功。所以难点就是分离变量。


至此,在没有使用所谓的“常数变易法”的情况下,求解出了一阶非齐次线性微分方程的通解。

2、一阶非齐次线性微分方程的常数变易法求解

下面在看一下常数变易法的求解步骤。

这就是常数变易法的根本所在。

三、小结

常数变易法并不是凭空出现的,它也是有根有据的,只不过在教科书上表现的十分突兀和莫名其妙。“常数变易”的含义取自,将齐次方程通解中的常数C易变为待定函数C(x)

下面引用博客园lookof前辈的两个感慨:
1.常数变易法在这里并没有显出比变量代换法更好的优势(因为就是一个思路的正逆推导而已),但在解决高阶线性微分方程时就会方便得多。因此倒不能说常数变易法是鸡肋(我开始的想法就是这样的)。
2.教科书上最后把方程的解拆成了一个齐次方程的通解和一个非齐次方程的特解之和,我看来简直有点脑残的表现,再往后看才知道,原来在解决高阶非齐次线性方程是要用到这个结构的,怪不得。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值