边上值非负的单源最短路径问题----Dijkstra算法

问题提出:给定一个带权的有向图(即有向网)G和源点v0,求v0到G中其他每个顶点的最短路径。限定各边上的权值大于0.

算法实现:按路径长度递增的顺序,逐步产生最短路径的算法,即首先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v0到其他各顶点的最短路径全部求出为止。

 

dijkstra具体实现方法如下:


1.设置两个顶点的集合T和S。

(1).S中存放已经找到的最短路径的顶点,初始时,集合S中只有一个顶点,即源点v0.

(2)T中存放当前还未找到最短路径的顶点。

2.在集合T中选取当前长度最短的一条路径(v0,。。vk),从而将vk加入到顶点集合S中,并修改v0到T中个顶点的最短路径长度;重复这一步骤,直到所有的顶点都加入到集合S中,算法结束。

例题一(有向图的最短路径问题):求顶点0到其他各顶点的最短路径长度,并输出相应的最短路径。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAXN 1000
#define INF 999999
int n;
int Edge[MAXN][MAXN];
int S[MAXN];///S[i]为0表示顶点vi还未加入到集合S中,S[i]为1表示vi已经加入到集合S中
int dist[MAXN];///dist[i]表示当前找到的从源点v0到终点vi的最短路径长度
int path[MAXN];///path[i]表示v0到vi最短路径上顶点vi的前一个顶点的序号
void Dijkstra(int v0)///求顶点v0到其他顶点的最短路径
{
    int i,j,k;
    for(i=0; i<n; i++) ///dist,S,path数组的初始化
    {
        dist[i]=Edge[v0][i];
        S[i]=0;
        if(i!=v0&&dist[i]<INF) path[i]=v0;
        else path[i]=-1;
    }
    S[v0]=1;///v0加入到集合S中
    dist[v0]=0;
    for(i=0; i<n-1; i++) ///从顶点v0确定n-1条最短路径,要进行n-1次循环
    {
        int MIN=INF;
        int u=v0;///选择当前集合T中具有最短路径的顶点u
        for(j=0; j<n; j++)
        {
            if(!S[j]&&dist[j]<MIN)
            {
                u=j;
                MIN=dist[j];
            }
        }
        S[u]=1;  ///将顶点u加入到集合S中
        for(k=0; k<n; k++)///修改集合T中顶点的dist和path数组元素的值
        {
            if(!S[k]&&Edge[u][k]<INF&&dist[u]+Edge[u][k]<dist[k])
            {
                dist[k]=dist[u]+Edge[u][k];
                path[k]=u;
            }
        }
    }
}
int main()
{
    int i,j;
    int u,v,w;
    while(scanf("%d",&n)!=EOF)
    {
        while(1)///输入数据
        {
            scanf("%d%d%d",&u,&v,&w);
            if(u==-1&&v==-1&&w==-1) break;
            Edge[u][v]=w;///有向图的输入
        }
        for(i=0; i<n; i++)///邻接矩阵Edge数组初始化
        {
            for(j=0; j<n; j++)
            {
                if(i==j) Edge[i][j]=0;
                else if(Edge[i][j]==0) Edge[i][j]=INF;
            }
        }
        Dijkstra(0);
        int shortest[MAXN];
        for(i=1;i<n;i++)
        {
            printf("%d\t",dist[i]);///输出顶点0到顶点i的最短路径
            memset(shortest,0,sizeof(shortest));
            int k=0;
            shortest[k]=i;///倒向追踪法,那么最后一个要输出的就是顶点i;shortest[0]存着顶点i
            while(path[shortest[k] ]!=0)///从顶点i开始倒着寻找,直到到达源点;path[shortese[0] ]:最短路径上顶点i的前一个顶点的序号
            {
                k++;
                shortest[k]=path[shortest[k-1] ];///下一个位置存的顶点是上一个位置存的顶点与源点最短路径上前一个顶点的序号
            }
            k++;
            shortest[k]=0;
            for(j=k;j>0;j--)
                printf("%d->",shortest[j]);
            printf("%d\n",shortest[0]);
        }
    }
    return 0;
}
/*
测试数据
输入:
6
0 2 5
0 3 30
1 0 2
1 4 8
2 5 7
2 1 15
4 3 4
5 3 10
5 4 18
-1 -1 -1
输出:
20      0->2->1
5        0->2
22      0->2->5->3
28      0->2->1->4
12      0->2->5
*/

 

 

 

输出结果如上图所示;

例题2(无项图的算法)原题POJ2387

#include<cstdio>
#include<iostream>
using namespace std;
#define INF 9999999
#define MAXN 1100
int Edge[MAXN][MAXN];
int dist[MAXN];
int S[MAXN];
int n,m;
void Dijkstra(int v0)
{
    int i,j,k;
    for(i=1; i<=n; i++)
    {
        dist[i]=Edge[v0][i];
        S[i]=0;
    }
    S[v0]=1;
    dist[v0]=0;
    for(i=1; i<n; i++)
    {
        int MIN=INF;
        int u=v0;
        for(j=1; j<=n; j++)
        {
            if(!S[j]&&dist[j]<MIN)
            {
                u=j;
                MIN=dist[j];
            }
        }
        S[u]=1;
        for(k=1; k<=n; k++)
        {
            if(!S[k]&&dist[u]+Edge[u][k]<dist[k])
            {
                dist[k]=dist[u]+Edge[u][k];
            }
        }
    }
}
int main()
{
    int i,j;
    int u,v,w;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(i=1; i<=n; i++)///先将矩阵初始化,对角线为0,其余为INF
        {
            for(j=1; j<=n; j++)
            {
                if(i==j) Edge[i][j]=0;
                else Edge[i][j]=INF;
            }
        }
        for(i=1; i<=m; i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            if(w<Edge[u][v])///可能有多条路,选择最短的
            {
                Edge[u][v]=w;
                Edge[v][u]=w;
            }
        }

        Dijkstra(1);
        cout<<dist[n]<<endl;
    }
    return 0;
}
/*
测试数据:
输入:
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
输出:
90
*/

 

 

 

 

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Dijkstra算法是一种用于解决单源最短路径问题算法。它的基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新与该节点相邻的节点的距离。通过这种方式,可以找到起点到其他节点的最短路径Dijkstra算法的时间复杂度为O(n^2),但是可以通过使用堆优化来将其优化到O(nlogn)。 ### 回答2: Dijkstra算法是一种解决单源最短路径问题的贪心算法,其思想是利用“松弛”操作来不断更新当前点到源点的最短距离,但前提是所有边的权重。如果有权边,则需要使用Bellman-Ford算法。 首先,我们需要定义一个数组dis数组,用于存储源点s到各个点的最短距离。dis[s]初始为0,其他点初始为无限大。接着,我们需要维护一个集合S,表示已经求出最短路径的点的集合。将源点s加入集合S中。 对于每个未加入S的点v,我们通过选择其它点到源点s的最短路径中的一个点u,然后将dis[v]更新为dis[u] + w(u,v),其中w(u,v)表示边(u,v)的权重。具体地,这个操作称为“松弛”操作。 在松弛操作中,我们需要比较dis[u] + w(u,v)和dis[v]的大小,如果前者更小,则更新dis[v]的值为dis[u] + w(u,v)。 重复执行以上操作,直到所有的点都加入到集合S中。最后dis数组中存储的就是源点s到所有点的最短距离。 Dijkstra算法可以用堆优化,时间复杂度为O(mlogn),其中n表示图中的点数,m表示边数。Dijkstra算法也可以应用于稠密图,时间复杂度为O(n^2)。 总之,Dijkstra算法是一种经典的求解单源最短路径问题算法,其实现简单,效率高,被广泛应用于路由算法和图像处理等领域。 ### 回答3: Dijkstra算法是一种在加权有向图中寻找从源节点到其他节点的最短路径的贪心算法。该算法基于其它路径加权节点的已知最短路径去更新更长路径的信息直到找到从源节点到目标节点的最短路径。在整个计算过程中,Dijkstra算法需要维护一个待处理节点集合和一个距离源节点的最短路径数组。 算法的具体实现如下: 1. 初始化源节点及其距离为0,其他节点的距离为无穷大。 2. 将源节点加入到待处理节点集合中。 3. 对于源节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 4. 遍历待处理节点集合中除源节点外的节点,选择距离最近的节点作为当前节点,并将它从待处理机集合中移除。 5. 对于当前节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 6. 重复步骤4和5,直到待处理节点集合为空或者目标节点已经被遍历。 Dijkstra算法的时间复杂度为O(n^2),其中n为节点数,由于它是贪心算法,只能处理权重的图,否则可能会陷入死循环。但是,Dijkstra算法单源最短路径问题的最优解,因此在处理小规模的图时效果很好。在处理大规模图时,需要使用其他高效的算法,如A*算法、Bellman-Ford算法等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值