关于CFT, FT, DTFT, DFS, DFT 的推导与解释

本文详细介绍了傅里叶变换的相关概念,包括傅里叶级数、连续时间傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、傅里叶级数(DFS)和离散傅里叶变换(DFT)。通过对各种变换的推导,阐述了它们的本质和应用场景,特别强调了离散信号在有限长序列处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 内容简介

写这个内容呢完全是因为要复习一下信号与系统这门课程,一下子给我蹦出了CFT, FT, DTFT, DFS, DFT一堆乱七八糟的玩意,书上写的详尽,但杂乱,网络上的资料粗略草率,但是整理得很好。因此我希望从更好的数学角度去总结所有的变换和级数的由来。
因此本篇并不是从概念理解讲起,不会直观地解释他们的作用,我希望更抽象地展示,以便更好地理解本质的e内容。

2 Fourier Series 傅里叶级数

任意的周期函数可以被表述为无限个三角函数的和,为了更简洁地表述,使用复指数的形式,换句话说, { e j n w t } ∣ n = − ∞ + ∞ \{e^{jnwt}\}|_{n=-\infty}^{+\infty} { ejnwt}n=+构成了完备正交基,每个基对应的系数可以求函数内积得到,也就是 F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t F_n=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt Fn=T1T/2T/2f(t)ejnwtdt。傅里叶级数可以表述如下:
f ( t ) = Σ − ∞ + ∞ F n e j n w t = Σ − ∞ + ∞ 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t ⏞ c o e f f i c i e n t s   e j n w t ⏞ b a s e s f(t)=\Sigma_{-\infty}^{+\infty}F_ne^{jnwt}=\Sigma_{-\infty}^{+\infty}\overbrace{\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt}^{coefficients} \ \overbrace{e^{jnwt}}^{bases} f(t)=Σ+Fnejnwt=Σ+T1T/2T/2f(t)ejnwtdt coefficients ejnwt bases
所以傅里叶级数本质上是用系数和基的方式表达原本的函数。

3 CFT 连续时间傅里叶变换

先考虑傅里叶级数生成的频谱

key value
Expansion Σ − ∞ + ∞ F n e j n w t \Sigma_{-\infty}^{+\infty}F_ne^{jnwt} Σ+Fnejnwt
Coefficients(Amptitude) F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t F_n=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt Fn=T1T/2T/2f(t)ejnwtdt
Period of frequency spectrum w = 2 π T w=\frac{2\pi}{T} w=T2π

对于非周期函数,可以认为 T → ∞ T\rightarrow\infty T,那么可以想象其傅里叶级数生成的频谱上,谱线间隔会趋近于0,且谱线幅值也会趋近于0(代入T趋近于无穷到上面的三个式子中就能直接得到这个结论)。

所以解决这个问题的想法就是,不用幅度谱来表示,转而使用幅度密度谱来表示,令df(density function)表示幅度密度函数(因为是在频谱上,所以是对频率的密度),计算一下周期趋近于无穷的时候的df值,有
d f ( w ) = l i m T → ∞ F n ( 2 π / T ) = l i m T → ∞ ∫ − T / 2 T / 2 f ( t ) e − j n w 0 t d t / 2 π = 1 2 π ∫ − ∞ + ∞ f ( t ) e − j w t d t df(w)=lim_{T\rightarrow\infty}\frac{F_n}{(2\pi/T)}=lim_{T\rightarrow\infty}\int_{-T/2}^{T/2}f(t)e^{-jnw_0t}dt/2\pi=\frac{1}{2\pi}\int_{-\infty}^{+\infty}f(t)e^{-jwt}dt df(w)=limT(2π/T)Fn=limTT/2T/2f(t)ejnw0tdt/2π=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值