目录
1 内容简介
写这个内容呢完全是因为要复习一下信号与系统这门课程,一下子给我蹦出了CFT, FT, DTFT, DFS, DFT一堆乱七八糟的玩意,书上写的详尽,但杂乱,网络上的资料粗略草率,但是整理得很好。因此我希望从更好的数学角度去总结所有的变换和级数的由来。
因此本篇并不是从概念理解讲起,不会直观地解释他们的作用,我希望更抽象地展示,以便更好地理解本质的e内容。
2 Fourier Series 傅里叶级数
任意的周期函数可以被表述为无限个三角函数的和,为了更简洁地表述,使用复指数的形式,换句话说, { e j n w t } ∣ n = − ∞ + ∞ \{e^{jnwt}\}|_{n=-\infty}^{+\infty} {
ejnwt}∣n=−∞+∞构成了完备正交基,每个基对应的系数可以求函数内积得到,也就是 F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t F_n=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt Fn=T1∫−T/2T/2f(t)e−jnwtdt。傅里叶级数可以表述如下:
f ( t ) = Σ − ∞ + ∞ F n e j n w t = Σ − ∞ + ∞ 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t ⏞ c o e f f i c i e n t s e j n w t ⏞ b a s e s f(t)=\Sigma_{-\infty}^{+\infty}F_ne^{jnwt}=\Sigma_{-\infty}^{+\infty}\overbrace{\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt}^{coefficients} \ \overbrace{e^{jnwt}}^{bases} f(t)=Σ−∞+∞Fnejnwt=Σ−∞+∞T1∫−T/2T/2f(t)e−jnwtdt
coefficients ejnwt
bases
所以傅里叶级数本质上是用系数和基的方式表达原本的函数。
3 CFT 连续时间傅里叶变换
先考虑傅里叶级数生成的频谱
key | value |
---|---|
Expansion | Σ − ∞ + ∞ F n e j n w t \Sigma_{-\infty}^{+\infty}F_ne^{jnwt} Σ−∞+∞Fnejnwt |
Coefficients(Amptitude) | F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n w t d t F_n=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jnwt}dt Fn=T1∫−T/2T/2f(t)e−jnwtdt |
Period of frequency spectrum | w = 2 π T w=\frac{2\pi}{T} w=T2π |
对于非周期函数,可以认为 T → ∞ T\rightarrow\infty T→∞,那么可以想象其傅里叶级数生成的频谱上,谱线间隔会趋近于0,且谱线幅值也会趋近于0(代入T趋近于无穷到上面的三个式子中就能直接得到这个结论)。
所以解决这个问题的想法就是,不用幅度谱来表示,转而使用幅度密度谱来表示,令df(density function)表示幅度密度函数(因为是在频谱上,所以是对频率的密度),计算一下周期趋近于无穷的时候的df值,有
d f ( w ) = l i m T → ∞ F n ( 2 π / T ) = l i m T → ∞ ∫ − T / 2 T / 2 f ( t ) e − j n w 0 t d t / 2 π = 1 2 π ∫ − ∞ + ∞ f ( t ) e − j w t d t df(w)=lim_{T\rightarrow\infty}\frac{F_n}{(2\pi/T)}=lim_{T\rightarrow\infty}\int_{-T/2}^{T/2}f(t)e^{-jnw_0t}dt/2\pi=\frac{1}{2\pi}\int_{-\infty}^{+\infty}f(t)e^{-jwt}dt df(w)=limT→∞(2π/T)Fn=limT→∞∫−T/2T/2f(t)e−jnw0tdt/2π=