离散信号(六)| 非周期信号 | 离散时间傅里叶变换(DTFT)+ DTFT、DFS及CTFT之间的关系

非周期信号的频域分析

与连续信号类似,对于离散的非周期信号,可采用离散时间傅里叶变换(DTFT)进行分析。

(一)从DFS到DTFT

非周期序列可以看作周期为无穷大的周期序列,从这一思想出发,可以在周期序列的傅里叶级数DFS基础上推导非周期序列的傅里叶变换。类似连续信号,对于长度有限的非周期信号 x ( n ) x(n) x(n),以N为周期,将 x ( n ) x(n) x(n)延拓为周期信号 x N ( n ) x_N(n) xN(n),这里,要求N大于 x ( n ) x(n) x(n)的长度,因为此时 x N ( n ) x_N(n) xN(n) x ( n ) x(n) x(n)的原样按周期重复,即
x N ( n ) = ∑ m = − ∞ ∞ x ( n − m N ) (5) x_N(n)=\sum_{m=-\infty}^{\infty}x(n-mN) \tag{5} xN(n)=m=x(nmN)(5)
对于周期序列 x N ( n ) x_N(n) xN(n)的DFS,考虑周期为无穷大是,即 N → ∞ N\to \infty N,则有 Ω 0 = 2 π / N → d Ω , k Ω 0 → Ω = w T \Omega_0=2\pi/N\to d\Omega,k\Omega_0\to \Omega=wT Ω0=2π/NdΩ,kΩ0Ω=wT(为连续量), 1 N = Ω 0 2 π → d Ω 2 π , ∑ k = 0 N − 1 → ∫ 0 2 π , x N ( n ) → x ( n ) \frac{1}{N}=\frac{\Omega_0}{2\pi}\to \frac{d\Omega}{2\pi},\sum_{k=0}^{N-1}\to \int_0^{2\pi},x_N(n)\to x(n) N1=2πΩ02πdΩ,k=0N102π,xN(n)x(n);同时,由上面的描述刻可知,当k在0和N-1之间变化时, Ω \Omega Ω在0和 2 π 2\pi 2π之间变换。另外,由式(5),当 N → ∞ N\to \infty N时, X ( k Ω 0 ) X(k\Omega_0) X(kΩ0)的幅值趋于无穷小,如同连续时间信号的傅里叶变换一样处理,利用频谱密度来描述非周期序列频谱的分布规律,可得
X ( Ω ) = l i m N → ∞ N X ( k Ω 0 ) = ∑ n = − ∞ n = ∞ x ( n ) e − j Ω n (6) X(\Omega)=lim_{N\to \infty}NX(k\Omega_0)=\sum_{n=-\infty}^{n=\infty}x(n)e^{-j\Omega n} \tag{6} X(Ω)=limNNX(kΩ0)=n=n=x(n)ejΩn(6)

x ( n ) = lim ⁡ N → ∞ x N ( n ) = l i m N → ∞ ∑ k = 0 N − 1 X ( k Ω 0 ) e j k Ω 0 n = l i m N → ∞ ∑ k = 0 N − 1 1 N X ( Ω ) e j Ω n = 1 2 π ∫ 0 2 π X ( Ω ) e j Ω n d Ω x(n)=\lim_{N\to \infty}x_N(n)=lim_{N\to \infty}\sum_{k=0}^{N-1}X(k\Omega_0)e^{jk\Omega_0 n}=lim_{N\to \infty} \sum_{k=0}^{N-1}\frac{1}{N}X(\Omega)e^{j\Omega n}=\frac{1}{2\pi}\int_0^{2\pi}X(\Omega)e^{j\Omega n}d\Omega x(n)=NlimxN(n)=limNk=0N1X(kΩ0)ejkΩ0n=limNk=0N1N1X(Ω)ejΩn=2π102πX(Ω)ejΩndΩ

x ( n ) = 1 2 π ∫ 0 2 π X ( Ω ) e j Ω n d Ω (7) x(n)=\frac{1}{2\pi}\int_0^{2\pi}X(\Omega)e^{j\Omega n}d\Omega \tag{7} x(n)=2π102πX(Ω)ejΩndΩ(7)
其中,式(6)称为离散时间信号的傅里叶变换,简称为离散时间傅里叶变换DTFT,式(7)则为离散时间傅里叶反变换。

X ( Ω ) X(\Omega) X(Ω)是变量 Ω \Omega Ω的周期函数,周期为 2 π 2\pi 2π。因为对任意整数q有
X ( Ω + 2 π q ) = ∑ n = − ∞ ∞ x ( n ) e − j ( Ω + 2 π q ) n = ∑ n = − ∞ ∞ x ( n ) e − j Ω n = X ( Ω ) X(\Omega+2\pi q)=\sum_{n=-\infty}^{\infty}x(n)e^{-j(\Omega+2\pi q)n}=\sum_{n=-\infty}^{\infty}x(n)e^{-j\Omega n}=X(\Omega) X(Ω+2πq)=n=x(n)ej(Ω+2πq)n=n=x(n)ejΩn=X(Ω)
通常称满足式(6)和式(7)的 x ( n ) x(n) x(n) X ( Ω ) X(\Omega) X(Ω)为离散时间傅里叶变换(DTFT)对,并将它们简记为
x ( n ) ↔ D T F T X ( Ω ) x(n) \overset{DTFT}{\leftrightarrow} X(\Omega) x(n)DTFTX(Ω)
由上讨论,已知 X ( Ω ) X(\Omega) X(Ω)是数字频率 Ω \Omega Ω的周期函数,周期为 2 π 2\pi 2π,所以式(6)可以看成是 X ( Ω ) X(\Omega) X(Ω)在频域展开为傅里叶级数的表示式, x ( n ) x(n) x(n)是该级数的系数。它与在时域把一个周期信号展开为傅里叶级数的表示相似,不同的是复指数符号相反。式(7)把序列 x ( n ) x(n) x(n)分解为复指数序列的线性组合,所以是非周期序列时域分析的表示式。这些复指数序列在频率上无限密集,无限靠近,它们的幅度等于 [ X ( Ω ) d Ω / ( 2 π ) ] [X(\Omega)d\Omega/(2\pi)] [X(Ω)dΩ/(2π)],式中 X ( Ω ) X(\Omega) X(Ω)是频谱密度序列,反映了非周期序列 x ( n ) x(n) x(n)的基本特征,简称为 x ( n ) x(n) x(n)的频谱。 x ( n ) x(n) x(n)持续时间可以是有限长序列也可以是无限长序列,但在无限长情况下,必须考虑式(6)无限项求和的收敛问题。因此DTFT存在条件与连续信号的傅里叶变换(CTFT)相对应,为了保证和式收敛,要求 x ( n ) x(n) x(n)是绝对可和,即
∑ n = − ∞ ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{\infty}|x(n)|<\infty n=x(n)<
或序列的能量是有限的,即
∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 < ∞ \sum_{n=-\infty}^{\infty}|x(n)|^2<\infty n=x(n)2<
(二)DTFT与DFS及连续信号傅里叶变换(CTFT)之间的关系

从DTFT的推导过程,说明DTFT是DFS当 N → ∞ N\to \infty N的极限情况,它们的共同点是:在时域它们都是离散的,在频域其频谱都是以 2 π 2\pi 2π为周期,周而复始。不同点是:离散时间周期信号的频谱则是离散的具有谐波性, X ( k Ω 0 ) X(k\Omega_0) X(kΩ0)是谐波的复振幅,适用于计算机计算,而离散时间非周期信号的频谱则是连续的频谱,不具有谐波性, X ( Ω ) X(\Omega) X(Ω)表示的是频谱密度,是连续变量 Ω \Omega Ω的函数,所以不利于利用计算机对频谱进行分析。

DTFT与CTFT有着密切的内在联系。它们的共同点是:在时域,它们的波形均为非周期,在频域, X ( w ) X(w) X(w) X ( Ω ) X(\Omega) X(Ω)均表示频谱密度,分别为连续变量 w w w Ω \Omega Ω的函数,所以都是连续频谱。而且在满足采样定理的约束条件下, X ( Ω ) X(\Omega) X(Ω)保存 X ( w ) X(w) X(w)的全部信息。不同点是: X ( Ω ) X(\Omega) X(Ω)是周期性而 X ( w ) X(w) X(w)是非周期的频谱,因而在求 x ( n ) x(n) x(n)的公式中只在频域的的一个周期区间 [ 0 , 2 π ] [0,2\pi] [0,2π](或 [ − π , π ] [-\pi,\pi] [π,π])内积分,而在求 x ( t ) x(t) x(t)的公式中积分区间为 [ − ∞ , ∞ ] [-\infty,\infty] [,]。再则由于离散时间信号是离散的,所以DTFT中 X ( Ω ) X(\Omega) X(Ω)的表示式是求和式,而CTFT中 X ( w ) X(w) X(w)的表示式是求积分的变换式。

DTFT与CTFT都是傅里叶变换,必然可以从DTFT求CTFT。特别当离散时间信号是从连续时间信号采样得来时,更有实际意义。为了使计算结果尽量逼近原始的连续信号的频谱,正如采样定理及上面混叠与泄露中所分析的,必须根据信号特点恰当地选取采样频率及截取采样信号的长度,以减少混叠误差与泄露误差带来的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值