离散傅里叶变换(DFT)要解决两个问题:一是信号离散化后它的频谱情况;二是快速运算算法。第一个问题将涉及周期离散信号的傅里叶级数(DFS),以及由DFS得到非周期信号的离散时间傅里叶变换(DTFT)和有限长序列的离散频谱表示;第二个问题将涉及DFT的快速算法——快速傅里叶变换(FFT)。
周期信号的频域分析
与周期模拟信号一样,周期离散信号同样可以展成傅里叶级数形式,并由此得出一新的变换对——离散傅里叶级数(Discrete Fourier Series),简记为DFS。
(一)离散傅里叶级数(DFS)的引入
可以从连续周期信号傅里叶级数的复指数形式导出周期序列的DFS。连续周期信号傅里叶级数的复指数形式为
x
(
t
)
=
∑
k
=
−
∞
∞
X
(
k
w
0
)
e
j
k
w
0
t
(1)
x(t)=\sum_{k=-\infty}^{\infty}X(kw_0)e^{jkw_0t} \tag{1}
x(t)=k=−∞∑∞X(kw0)ejkw0t(1)
X ( k w 0 ) = 1 T 0 ∫ 0 T 0 x ( t ) e − j k w 0 t d t k = 0 , 1 , 2 , ⋯ (2) X(kw_0)=\frac{1}{T_0}\int_0^{T_0}x(t)e^{-jkw_0t}dt \quad k=0,1,2,\cdots \tag{2} X(kw0)=T01∫0T0x(t)e−jkw0tdtk=0,1,2,⋯(2)
对连续周期信号
x
(
t
)
x(t)
x(t)的一个周期
T
0
T_0
T0进行N点采样,即
T
0
=
N
T
,
w
0
=
2
π
T
0
=
2
π
N
T
T_0=NT,w_0=\frac{2\pi}{T_0}=\frac{2\pi}{NT}
T0=NT,w0=T02π=NT2π,T为采样周期,这样采样得到的离散序列
x
(
n
)
x(n)
x(n)是以N为周期的周期序列,即
x
(
n
)
=
x
(
n
+
m
N
)
(
m
为
任
意
整
数
)
x(n)=x(n+mN) \quad (m为任意整数)
x(n)=x(n+mN)(m为任意整数)
设
Ω
0
=
w
0
T
=
2
π
N
\Omega_0=w_0T=\frac{2\pi}{N}
Ω0=w0T=N2π为离散域的基本频率,单位为弧度,
k
Ω
0
k\Omega_0
kΩ0是k次谐波的数字频率。这样,在式(2)中,
t
=
n
T
,
d
t
=
T
t=nT,dt=T
t=nT,dt=T,在一个周期内的积分变为在一个周期内的累加,即
X
(
k
Ω
0
T
)
=
1
N
T
∑
n
=
0
N
−
1
x
(
n
T
)
e
−
j
k
Ω
0
T
n
T
T
=
1
N
∑
n
=
0
N
−
1
x
(
n
T
)
e
−
j
k
Ω
0
n
X(k\frac{\Omega_0}{T})=\frac{1}{NT}\sum_{n=0}^{N-1}x(nT)e^{-jk\frac{\Omega_0}{T}nT}T=\frac{1}{N}\sum_{n=0}^{N-1}x(nT)e^{-jk\Omega_0n}
X(kTΩ0)=NT1n=0∑N−1x(nT)e−jkTΩ0nTT=N1n=0∑N−1x(nT)e−jkΩ0n
在序列表示中,可仅用
n
n
n表示nT,对应地,用
k
Ω
0
k\Omega_0
kΩ0表示
k
Ω
0
T
k\frac{\Omega_0}{T}
kTΩ0,则上式为
X
(
k
Ω
0
)
=
1
N
∑
n
=
0
N
−
1
x
(
n
)
e
−
j
k
Ω
0
n
=
1
N
∑
n
=
−
N
2
N
2
x
(
n
)
e
−
j
k
Ω
0
n
k
=
0
,
1
,
2
,
⋯
,
N
−
1
(3)
X(k\Omega_0)=\frac{1}{N}\sum_{n=0}^{N-1}x(n)e^{-jk\Omega_0 n}=\frac{1}{N}\sum_{n=-\frac{N}{2}}^{\frac{N}{2}}x(n)e^{-jk\Omega_0n} \quad k=0,1,2,\cdots,N-1 \tag{3}
X(kΩ0)=N1n=0∑N−1x(n)e−jkΩ0n=N1n=−2N∑2Nx(n)e−jkΩ0nk=0,1,2,⋯,N−1(3)
X
(
k
Ω
0
)
X(k\Omega_0)
X(kΩ0)是变量k的周期函数,周期为N,因为对任意整数q有
x
(
(
k
+
q
N
)
Ω
0
)
=
X
(
k
Ω
0
)
x((k+qN)\Omega_0)=X(k\Omega_0)
x((k+qN)Ω0)=X(kΩ0)
当周期信号从连续域变换到离散域以后,它的频率
w
w
w从
−
∞
∼
+
∞
-\infty\sim +\infty
−∞∼+∞的无限范围映射到数字频率
Ω
\Omega
Ω从
0
∼
2
π
0\sim 2\pi
0∼2π的有限范围。因此,连续周期信号的傅里叶级数可表示为具有无限多个谐波分量,而离散周期信号只含有有限个谐波分量,其谐波数为
k
=
2
π
Ω
0
=
N
k=\frac{2\pi}{\Omega_0}=N
k=Ω02π=N。所以对应于式(1)离散化处理后为
x
(
n
)
=
∑
k
=
0
N
−
1
X
(
k
Ω
0
)
e
j
k
Ω
0
T
n
T
=
∑
k
=
0
N
−
1
X
(
k
Ω
0
)
e
j
k
Ω
0
n
(4)
x(n)=\sum_{k=0}^{N-1}X(k\Omega_0)e^{jk\frac{\Omega_0}{T}nT}=\sum_{k=0}^{N-1}X(k\Omega_0)e^{jk\Omega_0 n} \tag{4}
x(n)=k=0∑N−1X(kΩ0)ejkTΩ0nT=k=0∑N−1X(kΩ0)ejkΩ0n(4)
从式(3)和式(4)可以看出,
x
(
n
)
x(n)
x(n)以N为周期,
x
(
n
)
x(n)
x(n)的频谱就以
Ω
0
=
2
π
N
\Omega_0=\frac{2\pi}{N}
Ω0=N2π的基本频率为间距离散化了。由此可以得到一个结论:周期序列的频谱是离散的。在前面的内容,我们看到了信号时域离散化、频域周期化这种现象;在这里,有完全对称的另一种情况,那就是时域周期化,频域离散化。
式(3)和式(4)描述了
x
(
n
)
x(n)
x(n)和
X
(
k
Ω
0
)
X(k\Omega_0)
X(kΩ0)相互计算的一对关系式。其中式(4)可以看作周期系列
x
(
n
)
x(n)
x(n)的傅里叶级数展开式,而
X
(
k
Ω
0
)
X(k\Omega_0)
X(kΩ0)则可以看作是
x
(
n
)
x(n)
x(n)的傅里叶级数展开式的系数。人们称满足这对关系式的周期序列
x
(
n
)
x(n)
x(n)和
X
(
k
Ω
0
)
X(k\Omega_0)
X(kΩ0)为离散傅里叶级数变换对,简记为
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0)
x(n)↔DFSX(kΩ0)
或者表示为
D
F
S
[
x
(
n
)
]
=
X
(
k
Ω
0
)
DFS[x(n)]=X(k\Omega_0)
DFS[x(n)]=X(kΩ0)和
I
D
F
S
[
X
(
k
Ω
0
)
]
=
x
(
n
)
IDFS[X(k\Omega_0)]=x(n)
IDFS[X(kΩ0)]=x(n)。即正变换为式(3),反变换为(4)。
(二)DFS的主要性质
- 线性性质
若
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
,
y
(
n
)
↔
D
F
S
Y
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0),y(n) \overset{DFS}{\leftrightarrow}Y(k\Omega_0)
x(n)↔DFSX(kΩ0),y(n)↔DFSY(kΩ0),则
a
x
(
n
)
+
b
y
(
n
)
↔
D
F
S
a
X
(
k
Ω
0
)
+
b
Y
(
k
Ω
0
)
ax(n)+by(n) \overset{DFS}{\leftrightarrow}aX(k\Omega_0)+bY(k\Omega_0)
ax(n)+by(n)↔DFSaX(kΩ0)+bY(kΩ0)
- 周期卷积定理
若
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
,
h
(
n
)
↔
D
F
S
H
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0),h(n) \overset{DFS}{\leftrightarrow}H(k\Omega_0)
x(n)↔DFSX(kΩ0),h(n)↔DFSH(kΩ0),则
x
(
n
)
⨀
h
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
H
(
k
Ω
0
)
x
(
n
)
h
(
n
)
↔
D
F
S
1
N
X
(
k
Ω
0
)
⨀
H
(
k
Ω
0
)
x(n)\bigodot h(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0)H(k\Omega_0)\\ x(n)h(n) \overset{DFS}{\leftrightarrow} \frac{1}{N}X(k\Omega_0)\bigodot H(k\Omega_0)
x(n)⨀h(n)↔DFSX(kΩ0)H(kΩ0)x(n)h(n)↔DFSN1X(kΩ0)⨀H(kΩ0)
⨀
\bigodot
⨀为周期卷积的符号,两周期序列
x
(
n
)
x(n)
x(n)和
h
(
n
)
h(n)
h(n)的周期卷积定义为
x
(
n
)
⨀
h
(
n
)
=
h
(
n
)
⨀
x
(
n
)
=
∑
k
=
0
N
−
1
x
(
k
)
h
(
n
−
k
)
x(n)\bigodot h(n)=h(n)\bigodot x(n)=\sum_{k=0}^{N-1}x(k)h(n-k)
x(n)⨀h(n)=h(n)⨀x(n)=k=0∑N−1x(k)h(n−k)
周期卷积和线性卷积的惟一区别在于 周期卷积时仅仅在单个周期内求和,而线性卷积则是对所有的k值求和。
- 复共轭
若
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0)
x(n)↔DFSX(kΩ0),则
x
∗
(
−
n
)
↔
D
F
S
X
∗
(
k
Ω
0
)
x^*(-n) \overset{DFS}{\leftrightarrow}X^*(k\Omega_0)
x∗(−n)↔DFSX∗(kΩ0)
*表示复共轭
- 位移性质
若
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0)
x(n)↔DFSX(kΩ0),则
x
(
n
−
m
)
↔
D
F
S
e
−
j
k
Ω
0
m
X
(
k
Ω
0
)
x(n-m) \overset{DFS}{\leftrightarrow}e^{-jk\Omega_0m}X(k\Omega_0)
x(n−m)↔DFSe−jkΩ0mX(kΩ0)
- 帕斯瓦尔定理
设
x
(
n
)
↔
D
F
S
X
(
k
Ω
0
)
,
h
(
n
)
↔
D
F
S
H
(
k
Ω
0
)
x(n) \overset{DFS}{\leftrightarrow}X(k\Omega_0),h(n) \overset{DFS}{\leftrightarrow}H(k\Omega_0)
x(n)↔DFSX(kΩ0),h(n)↔DFSH(kΩ0),则
∑
n
=
0
N
−
1
x
(
n
)
h
∗
(
n
)
=
1
N
∑
k
=
0
N
−
1
X
(
k
Ω
0
)
H
∗
(
k
Ω
0
)
\sum_{n=0}^{N-1}x(n)h^*(n)=\frac{1}{N}\sum_{k=0}^{N-1}X(k\Omega_0)H^*(k\Omega_0)
n=0∑N−1x(n)h∗(n)=N1k=0∑N−1X(kΩ0)H∗(kΩ0)
特别地,当
x
(
n
)
=
h
(
n
)
x(n)=h(n)
x(n)=h(n)时,有
∑
n
=
0
N
−
1
∣
x
(
n
)
∣
2
=
1
N
∑
k
=
0
N
−
1
∣
X
(
k
Ω
0
)
∣
2
\sum_{n=0}^{N-1}|x(n)|^2=\frac{1}{N}\sum_{k=0}^{N-1}|X(k\Omega_0)|^2
n=0∑N−1∣x(n)∣2=N1k=0∑N−1∣X(kΩ0)∣2