算术移位 VS 逻辑移位

定义

逻辑左移(LLS,Logical Left Shift):低位补零。
逻辑右移(LRS,Logical Right Shift):高位补零。

算术左移(ALS,Arithmetic Left Shift):符号位不变,低位补零。
算术右移(ARS,Arithmetic Right Shift):高位补符号位。

注意:以上4种定义,所有位(包括符号位)要同步移动。

结论

1. 逻辑左移与算术左移完全相同。
2. 正数:逻辑右移与算术右移完全相同。
3. 负数:逻辑右移与算术右移不同。

以上结论从严格从定义上得到。接下来解释一下多数人的疑惑。

疑惑

1. 负数的逻辑左移,明显符号位被移走了,1变成0了呀,负数不就变成正数了吗?为何能和算术左移一样呢?

首先呢,从定义上看,逻辑左移和算术左移就是一样的,这个问题准确来讲是问为什么这么定义?

其实这是一个常见的误区。我们要注意,计算机是按补码存储的。

假设计算机的位长是4位,1111bb表示二进制)这个数是几?这个数的实际大小应该是保持符号位不变,其他位取反再加1,那么这个数是-1

计算机位长4 bit能表示的数值范围为-8 ~ 7,即1000b ~ 0111b,我们只看负数部分:

原值左移1位
十进制二级制二级制十进制说明
-111111110-2扩大2倍
-211101100-4扩大2倍
-311011010-6扩大2倍
-411001000-8扩大2倍
-5101101106溢出,undifined
-6101001004溢出,undifined
-7100100102溢出,undifined
-8100000000溢出,undifined

我们看到,从-5开始,左移1位,全部会溢出。从数值上来看,-5左移1位,应该扩大2倍至-10,但是-10显然超出了4 bit字长计算机的表示范围,也就是溢出溢出的结果当然是不确定的,不可信。即使你保持符号位不变,4 bit也无法表示出-10

思考一下,使得我们疑惑的,无非是:次高位如果为0(也就是上表的-5 ~ -8 这些数)左移1位之后会出现符号反转,,非常奇妙的是,这些数左移1位之后恰好全部溢出

这是巧合吗?

假设计算机位长n bit,那么可表示的负数范围为 -2n-1~ -1 。

如图,将[-2n-1, -1]分成连续的两段:

  └─────────────┘   └───────────┘
 -2n-1      -(2n-2+1)  -2n-2       -1
10 00...0b   10 11...1b11 00...0b11 11...1b

  • 第一段 [-2n-1, -(2n-2+1)] 对应次高位为0的情况:
    此时左移1位(即乘以2),符号位反转,但是数值上恰好都溢出了。
  • 第二段 [-2n-2, -1] 对应次高位为1的情况:
    此时左移1位(即乘以2),符号位不变,数值上也不会溢出。

结论:次高位为1时,逻辑左移不会改变符号;次高位为0时,逻辑左移数值上一定会溢出,此时已经没有意义。综上,逻辑左移与算术左移相同。

算术移位逻辑移位和循环移位是计算机中常用的位移操作。它们的区别在于对于移位后的空缺位的填充方式不同。 1. 算术移位算术移位是指在移位时,保留符号位,移位后空缺的位用符号位来填充。例如,对于二进制数1011,进行算术右移一位,得到1101,左移一位,得到0110。 2. 逻辑移位逻辑移位是指在移位时,空缺的位用0来填充。例如,对于二进制数1011,进行逻辑右移一位,得到0101,左移一位,得到1010。 3. 循环移位:循环移位是指将二进制数的所有位进行循环移位,即移位后,最高位的数值会移动到最低位,其他位也按照相同的规则进行移位。循环移位分为带进位和不带进位两种方式。带进位的循环移位是指在移位时,最高位的数值会移动到最低位,并且会影响到进位位,其他位也按照相同的规则进行移位。不带进位的循环移位是指在移位时,最高位的数值会移动到最低位,其他位也按照相同的规则进行移位,进位位不受影响。 下面是三种移位操作的示例: 1. 算术移位 ```python # 算术右移 a = 0b1011 b = a >> 1 print(bin(b)) # 输出:-0b101 # 算术左移 a = 0b1011 b = a << 1 print(bin(b)) # 输出:0b10110 ``` 2. 逻辑移位 ```python # 逻辑右移 a = 0b1011 b = a >> 1 print(bin(b)) # 输出:0b101 # 逻辑左移 a = 0b1011 b = a << 1 print(bin(b)) # 输出:0b10110 ``` 3. 循环移位 ```python # 带进位的循环右移 a = 0b1011 b = (a >> 1) | (a << (4 - 1)) print(bin(b)) # 输出:0b1101 # 不带进位的循环右移 a = 0b1011 b = (a >> 1) | (a << (4 - 1)) & 0b1111 print(bin(b)) # 输出:0b1101 # 带进位的循环左移 a = 0b1011 b = (a << 1) | (a >> (4 - 1)) print(bin(b)) # 输出:0b0111 # 不带进位的循环左移 a = 0b1011 b = (a << 1) | (a >> (4 - 1)) & 0b1111 print(bin(b)) # 输出:0b0111 ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值