基于多重继承与信息内容的知网词语相似度计算 - 论文及代码讲解

这篇博客介绍了《基于多重继承与信息内容的知网词语相似度计算》论文,探讨了义原和义项的概念,以及如何在代码中实现词语的相似度计算。作者指出论文和代码理解难度较大,涉及到复杂的义原层次体系和多重继承特性。在HybridSim.py和howNet.py中,通过查找和计算义原间的距离来确定词语的相似度。代码调试过程中发现可能存在的问题和优化点。
摘要由CSDN通过智能技术生成

论文:《基于多重继承与信息内容的知网词语相似度计算》-2017-张波,陈宏朝等 查看
代码:https://github.com/yaleimeng/Final_word_Similarity

总体感受:
太乱了,有可能是之前没怎么接触这块。
看论文,搞不懂怎么回事,义项、义原是啥,怎么这么多定义,到头来还是不懂两个词的相似度怎么计算,比哈工大词林那篇论文复杂多了。
看代码,函数调来调去,一会这个判断一会那个判断,不明白为啥要这么干,光读词表就看着很费劲。
(程序可能还有bug,调试时有时不能正确运行)

概念

义原:义原是描述义项的最基本单位,分为事件、实体、属性、属性值、数量、数量值、次要特征、语法、动态角色和动态属性等 10 大类,2000 版的知网共有 1618 个义原。 通过上下位关系,所有的知网义原组成一个树状义原层次体系,如图 1 所示。
义项:知网中所有的义项(又称“概念”)并不是组织为树状概念结构,而是采用“义原”对义项进行描述定义。
在这里插入图片描述
如图 2 所示,由于一个词语可能有多个义项,每一个义项可能有多个上位节点
(抽象概念或实概念),所以体现了义项网的多重继承特征, 但这种多重继承仅表现在叶子节点(义项) 上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值