文章目录
平台:https://www.ricequant.com/quant
api1:https://www.ricequant.com/doc/rqdata-institutional#research-API-get_fundamentals
api2:https://www.ricequant.com/doc/api/python/chn#wizard-stock
rice quant ipynb:rice quant ipynb
p26 复习
视频:https://www.bilibili.com/video/av55456917?p=26
p27 单因子有效分析介绍
视频:https://www.bilibili.com/video/av55456917?p=27
1,单因子有效性分析,多因子相关性分析以及合成分析
单因子跟收益率之间的联系: 因子特征值,收益率当作目标值
最终选出10个因子左右
因子的IC分析:判定因子与收益的相关强度
信息系数IC定义:因子横截面数据与股票的收益相关性,采用斯皮尔曼相关系数。
某期的收益率:(这期收盘价-上期收盘价)/上期收盘价
p28 案例:因子暴露度与收益相关性计算演示
视频:https://www.bilibili.com/video/av55456917?p=28
目标:计算2017-01-03的IC值,得出相关性。(正还是负)
代码:
import scipy.stats as st
# 计算2017-01-03的IC值 (与收益相关)
# 1,2017-01-03的因子暴露值
q = query(fundamentals.income_statement.basic_earnings_per_share)
# 获取的是横截面数据
fund = get_fundamentals(q, entry_date='2017-01-03')[:, '2017-01-03', :]
# 2,2017-01-03, 01-04的股票收益
price_now = get_price(list(fund.index), start_date='2017-01-03', end_date='2017-01-03', fields='close').T
price_next