【量化】4天学会python机器学习与量化交易-笔记5(p26~p30)

这篇博客是关于使用Python进行量化交易的学习笔记,重点介绍了如何进行单因子有效性和信息系数(IC)分析。内容包括复习基本概念,通过RiceQuant平台和API获取数据,理解因子与收益的相关性,使用alphalens库进行因子横截面数据的准备和IC计算,以及实战中遇到的问题和解决方法。博主分享了相关视频资源,帮助读者快速掌握量化交易的知识。
摘要由CSDN通过智能技术生成

平台:https://www.ricequant.com/quant
api1:https://www.ricequant.com/doc/rqdata-institutional#research-API-get_fundamentals
api2:https://www.ricequant.com/doc/api/python/chn#wizard-stock
rice quant ipynb:rice quant ipynb

p26 复习

视频:https://www.bilibili.com/video/av55456917?p=26

p27 单因子有效分析介绍

视频:https://www.bilibili.com/video/av55456917?p=27

1,单因子有效性分析,多因子相关性分析以及合成分析
单因子跟收益率之间的联系: 因子特征值,收益率当作目标值

最终选出10个因子左右

因子的IC分析:判定因子与收益的相关强度

信息系数IC定义:因子横截面数据与股票的收益相关性,采用斯皮尔曼相关系数。
某期的收益率:(这期收盘价-上期收盘价)/上期收盘价

p28 案例:因子暴露度与收益相关性计算演示

视频:https://www.bilibili.com/video/av55456917?p=28
目标:计算2017-01-03的IC值,得出相关性。(正还是负)
代码:

import scipy.stats as st

# 计算2017-01-03的IC值 (与收益相关)
# 1,2017-01-03的因子暴露值
q = query(fundamentals.income_statement.basic_earnings_per_share)
# 获取的是横截面数据
fund = get_fundamentals(q, entry_date='2017-01-03')[:, '2017-01-03', :]

# 2,2017-01-03, 01-04的股票收益
price_now = get_price(list(fund.index), start_date='2017-01-03', end_date='2017-01-03', fields='close').T
price_next 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值